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1 A crash course on the Standard Model

The Standard Model (SM) is a collection of gauge theories which describe the strong, electromag-
netic and weak interactions. As illustrated in Fig. 1, a good deal of its physics content can be
understood diagrammatically: The elementary fermions (quarks and leptons) carry certain types
of charges (color, electric charge, . . . ), and they interact by exchanging gauge bosons. The precise
way how these interactions work is determined by the Feynman rules which follow from the SM
Lagrangian:
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Figure 1: Standard Model
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■ Quantum Electrodynamics (QED) describes the electromagnetic interaction. It tells
us that particles carrying an electric charge interact with other electrically charged particles by
exchanging massless photons. Take for example Møller scattering (e−e− → e−e−):

( ) ( )

= + + + + + +. . . (1)

Quantum field theory says that the process is the sum of all possible Feynman diagrams that
can contribute. All such diagrams are constructed from only three elementary ingredients: the
electron propagator (black solid line), the photon propagator (blue wavy line) and the electron-
photon vertex. These objects have simple mathematical expressions, and each loop means that
we integrate over the four-momentum. Ultimately, every process that can happen in QED can be
constructed from these elementary rules, which are defined by the QED Lagrangian.

In particular, each vertex comes with a factor e (the electric charge), so we can order the
diagrams with powers of the electromagnetic coupling αQED = e2/(4π) ≈ 1/137. Because this is
a small quantity, we can apply perturbation theory: We expand any such process in powers of
αQED and stop the series after a few terms, because higher-order (loop) diagrams will be strongly
suppressed. In fact, for many applications even the tree-level diagram (the first diagram on the
r.h.s. above) is sufficient; this is basically what quantum mechanics describes, whereas quantum
field theory also takes into account all possible quantum loop effects. The smallness of αQED has
led to the spectacular successes of QED in various precision measurements, from the anomalous
magnetic moments of electrons and muons to the energy level splittings in atoms.

■ Quantum Chromodynamics (QCD) is the part of the SM describing the strong interac-
tion, which acts on the color charge. Only quarks and gluons carry color charges, so they are the
only particles that feel the strong interaction. QCD says that quarks interact with other quarks
by exchanging massless gluons. However, in contrast to QED, which is a U(1) gauge theory, QCD
is a SU(3) gauge theory, which is non-Abelian and this has important consequences: It implies
that also the gluons themselves carry color charges, so they can interact with each other. For this
reason the Feynman rules of QCD (first column in Fig. 1) not only comprise a quark-gluon vertex
but also a three-gluon and a four-gluon vertex.

These additional interactions are also what cause the strong coupling αQCD to strongly run with
the momentum scale: At large energies, αQCD is still small and quarks and gluons almost behave
like free particles, which is called asymptotic freedom, so one can employ perturbation theory
like in QED. At low momenta, on the other hand, the coupling becomes large (hence the name
strong interaction), which implies that we can no longer expand processes in Feynman diagrams.
If you replace the photons in Eq. (1) by gluons, then higher orders in αQCD might be as large as
lower orders and the series won’t converge, so perturbation theory becomes useless. QCD is still
completely specified by its Feynman rules, but we need nonperturbative methods to calculate
things in practice.

A closely connected phenomenon is confinement: we cannot detect quarks and gluons as free
particles because they are always confined in hadrons, which are bound states of quarks and gluons
like mesons, baryons, etc. So even though we know perfectly well what the QCD Lagrangian and
its elementary Feynman rules are, at the end of the day they are always folded into hadronic matrix
elements. For example, we cannot directly measure how a photon couples to a quark but only how
it couples to a hadron which consists of quarks and gluons (Fig. 2). This is what makes the study
of the strong interaction a challenging and fascinating topic.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p,Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q+Q′) ,

∆ = Q−Q′ = pf − pi , (8)

with the inverse relations

pi = p− ∆
2 ,

pf = p+ ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 +Q′2

2m2
, η− =

Q ·Q′

m2
, ω =

Q2 −Q′2

2m2
,

λ =
p · Σ
m2

=
p ·Q
m2

=
p ·Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q ·Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2+ − η2−
,

λ = −Y

2

√
ω2 + η2− − η2+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2− < η2+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

. .
 .

Figure 2: When a photon couples to a hadron (here a meson as a qq̄ system), the quarks inside
the hadron can exchange gluons in all possible ways. This cannot be calculated using perturbation
theory so one needs nonperturbative methods.

Quarks also come in different flavors which form three generations: up and down, strange and
charm, bottom and top. The different flavors come with different masses, from very light to very
heavy:

mu ∼ md ∼ 2 . . . 6MeV, ms ∼ 100 MeV,
mc ∼ 1.3 GeV,
mb ∼ 4.2 GeV,
mt ∼ 173 GeV.

(2)

Since we cannot measure quarks directly, one has to define a convention what a ‘quark mass’
actually means; usually they are extracted from high-energy scattering experiments or through
processes involving hadrons. Also here QCD plays a key role: For example, protons and neutrons
consist of three light quarks (protons are made of uud and neutrons of ddu), but the mass of the
proton is not 10 . . . 15 MeV, as you might expect by adding up three light quarks, but rather 940
MeV. In other words, 98% of the mass of the proton (and other hadrons too) must be generated
by QCD itself. This is called dynamical mass generation, another non-perturbative effect that
you won’t get by simply adding up Feynman diagrams.

■ The weak interactions are the final piece of the SM. The SM combines the electromagnetic
and weak interactions to an electroweak SU(2)×U(1) gauge theory, corresponding to weak isospin
and hypercharge, which is spontaneously broken to U(1)EM by the Higgs mechanism. The Higgs
boson, experimentally discovered in 2012, gives masses to the quarks, the charged leptons and the
W and Z bosons, whereas the massless particle we know as the photon is a linear combination of
one of the SU(2) weak isospin gauge bosons and the U(1) hypercharge gauge boson.

As you can see in Fig. 1, the Feynman rules for the weak interaction become quite messy. While
the Z bosons couple to all fermions to produce neutral currents, the charged currents obtained by
the W± bosons add or subtract one unit of electric charge so they must also change the flavor:
electrons turn into neutrinos and vice versa, u quarks turn into d quarks and so on. This is the
microscopic origin of neutron β decay, because a d quark inside a neutron (ddu) can turn into a u
quark by emitting a W− boson, thus creating a proton (uud), and the W− then emits an electron
and an antineutrino. When W bosons couple to quarks they can also change the generation, for
example a u quark may turn into an s quark – these transitions are mediated by the off-diagonal
elements in theCKM matrix which is attached to the vertex. Apart from the fermion-gauge-boson
couplings, the gauge bosons also interact by themselves, and they couple to the Higgs (penultimate
row in Fig. 1) which gives them a mass. The neutrinos and the photon do not couple to the Higgs
and remain massless.

The electroweak sector is also a good place to look for physics beyond the SM – e.g., today we
know that the neutrinos actually do have small masses, so the SM as it stands cannot be the full
story. Also the experimentally observed flavor anomalies primarily show up through the electroweak
interactions.
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2 Flavor-changing neutral currents

The quantities we are primarily interested in are flavor-changing neutral currents (FCNCs).
These are processes where a photon or a Z boson couple to a quark and change its flavor. Because
A and Z are electrically neutral, they cannot change the electric charge of the quark, so this forbids
transitions like {u, c, t} ↔ {d, s, b} where the former carry charge 2/3 and the latter −1/3. Still,
FCNCs can induce transitions within each set {u, c, t} or {d, s, b}.

You see, however, from Fig. 1 that there is no Feynman rule describing such a process: When
A, Z couple to a quark, they leave its flavor intact. This does not mean that such a process cannot
happen in general: If, say, a strange quark emits a W+ boson it can turn into an up, charm or top
quark, which couples to A or Z and then reabsorbs the W+ boson to turn into a different flavor
like d. Or the strange quark could emit a W+ boson that joins with another one into a three-boson
vertex. Diagrammatically, these two options look like this:

𝑍, 𝐴

𝜇, 𝑎 

𝑍, 𝐴

𝑠𝑑𝑠𝑑
𝑢, 𝑐, 𝑡

𝑢, 𝑐, 𝑡

𝑢, 𝑐, 𝑡

𝑊⁺

𝑍, 𝐴

𝜇, 𝑎 

𝑠𝑑

𝑊⁺𝑊⁺= + + . . . (3)

So the full, dressed vertex between s and d quark containing all quantum loop effects does
indeed exist, it just doesn’t have a tree level contribution like in Eq. (1) and one needs at least a
loop diagram. Because such loop diagrams are strongly suppressed by the large masses of the W
bosons, the amplitude for this process will be very small. Additional suppression will also come
from the weak coupling and the CKM matrix elements attached to the vertices. Therefore, such
processes pose tight constraints on physics beyond the SM with possible new interactions that
might allow them to happen already at tree level.

Now, there is an essential complication here because in order to compute such a vertex it is
not sufficient to just calculate the one-loop diagrams above. Quarks are also subject to the strong
interaction, so they can exchange arbitrarily many gluons:

𝑍, 𝐴

𝜇, 𝑎 

𝑍, 𝐴

𝑠𝑑𝑠𝑑
𝑢, 𝑐, 𝑡𝑢, 𝑐, 𝑡

𝑊⁺

= + + + +  . . . (4)

Likewise, in the second diagram of Eq. (3) one could exchange arbitrarily many gluons between
the quarks at the bottom. Gluons do not change the flavor, so every time a quark emits or absorbs
a gluon its flavor stays intact. Unless the momenta are very large, the strong coupling is not
small and higher-loop diagrams with massless gluons are not suppressed, so there is no point in
calculating the vertex diagram by diagram – perturbation theory won’t work. Instead, this calls
for a nonperturbative treatment in QCD. A possible way to do so is to solve Bethe-Salpeter
equations (BSEs).
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.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2− < η2+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].
We can also localize the various kinematic limits in this

plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2− < η2+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].
We can also localize the various kinematic limits in this

plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

𝑍, 𝐴

𝑠

𝑢
𝐾𝜋

𝑑

Figure 3: K → π transition matrix element

Another complication is that we cannot detect free quarks due to confinement. Thus, all quark
lines must end in a hadron like in Fig. 2 and they can only appear internally inside a hadron. For
the vertex discussed above, this means we ultimately need to study transition matrix elements
like in Fig. 10, where for example a kaon (us̄) turns into a pion (ud̄). But this is complicated
by QCD effects: When we calculate the K → π transition, we also need to take into account all
gluon effects which are nonperturbative. This is what makes practical calculations extremely hard,
and nonperturbative QCD effects are usually the main obstacle in precision determinations of such
flavor matrix elements.

3 Bethe-Salpeter equation

So how can we calculate the vertex in Eq. (4) nonperturbatively? A simple analogue is the geometric
series

∞∑

n=0

xn =
1

1− x
for |x| < 1 . (5)

Imagine that each term in the series stands for some Feynman diagram in QFT, which contains
couplings that are small. Then for small |x| you can stop the expansion after a few terms. On the
other hand, summing up the series becomes impossible if the couplings become large, i.e. |x| > 1.
But now imagine that someone gave you the equation

f(x) = 1 + xf(x) ⇔ f(x)−1 = 1− x , (6)

which has the solution f(x) = 1/(1 − x) for any x. If x is small, you can expand f(x) in a
perturbative series and stop after a few terms like before. However, if x becomes large, Eqs. (6)
and (5) no longer agree: even though

f(x) = 1 + xf(x) = 1 + x+ x2f(x) = 1 + x+ x2 + x3f(x) = . . . (7)

is exact at every step (simply reinsert the l.h.s. into the r.h.s.), in the geometric series we drop the
last term which otherwise pulls the result back even if x becomes large, and this is what makes the
perturbative expansion fail. In any case, this is not a serious problem because in that case we can
just solve the non-perturbative equation directly.

Of course, this implies that we know the correct non-perturbative equation beforehand, but it
turns out that quantum field theory gives us just that. The analogue of Eq. (6) for a quark-photon
or quark-Z-boson vertex is the Bethe-Salpeter equation (BSE) shown in Fig. 4, which has the
structural form

Γ = Γ0 +KG0 Γ. (8)

Γ is the full vertex, Γ0 is the tree-level vertex given by the Feynman rules, K is the kernel that

5



= +
𝑄

𝑘₋

𝑘₊

𝑘₋
‚

‚
𝑘₊

𝑘₋

𝑘₊

𝑄

K

= + K + + . . .KK

𝑎

𝑏

𝑎

𝑏

𝑐

𝑑

Figure 4: Inhomogeneous Bethe-Salpeter equation for the A/Z boson vertex

contains all possible interactions between quark and antiquark, G0 is the product of two dressed
quark propagators, which contain all possible self-interactions of the quarks, and each multiplication
stands for a loop momentum integration. If you iterate this equation, you will generate all possible
exchanges like those in Eq. (4):

Γ = Γ0 +KG0 Γ0 +KG0KG0 Γ0 + . . . (9)

So instead of summing up a (non-converging) series of integrals, we solve a nonperturbative integral
equation for Γ. This is usually done by iteration: Start with some guess for Γ and iterate the
equation until it converges. As long as Γ0 ̸= 0, the BSE will have a nontrivial solution because we
can formally rewrite it as

Γ = (1−KG0)
−1 Γ0 . (10)

If the kernel is a one-gluon exchange, then the BSE solution automatically generates all possible
gluon ladders at once, without the need for adding up diagrams. This is pretty efficient, right?

If we were just talking about QCD effects entering in the kernel K, Eq. (8) would indeed be
the full equation. Of course, K is a priori unknown but there are ways to derive it systematically
starting with a gluon exchange, crossed gluon exchanges, three-gluon vertices and so on. Note that
repeated gluon exchanges cannot appear in the kernel because those are already generated by the
iteration – the kernel K must be the ‘two-particle irreducible’ qq̄ kernel.

Now, QCD does not change the flavor and neither do the A or Z couplings, so if an up quark
comes in, an up quark must go out again. How can we then describe the vertex in Eq. (3), where
the quark legs carry different flavor quantum numbers? Let’s denote the general quark-photon or
quark-Z-boson vertex by Γab, where a quark with flavor b comes in and a quark with flavor a goes
out (see Fig. 4). We observe the following:

■ Because A and Z are neutral, the electric charges of the incoming and outgoing quarks must
be the same, so vertices like Γud, Γdu, Γus etc. cannot exist in general. So again, a and b must
have the same type {u, c, t} or {d, s, b}.

■ Only the flavor-diagonal vertices (Γuu, Γdd, Γss, . . . ) have tree-level terms given by the Feyn-
man rules. The flavor-nondiagonal vertices (Γuc, Γcu, Γds, . . . ) do not have tree-level terms,
so they can only be generated through loops with W bosons.

■ If you start with Γuu and exchange a gluon, you still end up with two up quarks. If you
exchange aW boson, the quarks on the other side of the exchange must have the opposite type
(d, s or b), so they must end in a vertex Γdd, Γds, Γsd, etc. This means we arrive at coupled
equations.
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In the following we drop the second diagram in Eq. (3), which is suppressed by two W prop-
agators and their heavy masses, and restrict ourselves to the first diagram and hence exchanges
of gluons and W bosons. Including two generations of quarks (up, down, strange, charm), we see
that the structure of the equation must be as follows:




Γuu

Γuc

Γcu

Γcc

Γdd

Γds

Γsd

Γss




=




Γ0
uu

0
0
Γ0
cc

Γ0
dd

0
0
Γ0
ss




+




K 0 0 0 Mdd
uu Mds

uu Msd
uu Mss

uu

0 K 0 0 Mdd
uc Mds

uc Msd
uc Mss

uc

0 0 K 0 Mdd
cu Mds

cu Msd
cu Mss

cu

0 0 0 K Mdd
cc Mds

cc Msd
cc Mss

cc

Muu
dd Muc

dd Mcu
dd Mcc

dd K 0 0 0
Muu

ds Muc
ds Mcu

ds Mcc
ds 0 K 0 0

Muu
sd Muc

sd Mcu
sd Mcc

sd 0 0 K 0
Muu

ss Muc
ss Mcu

ss Mcc
ss 0 0 0 K







Ψuu

Ψuc

Ψcu

Ψcc

Ψdd

Ψds

Ψsd

Ψss




. (11)

Here we abbreviated Ψab = G0
ab Γab. Mcd

ab denotes a W -boson exchange between quarks ab on the
left and cd on the right (see Fig. 4) and K is the QCD kernel which does not change the flavor.
Thus, without W -boson exchanges the kernel becomes diagonal and the equations decouple to

Γab = δab Γ
0
ab +KG0

ab Γab . (12)

For a = b we return to Eq. (8), where the vertices Γuu, Γdd, Γss, Γcc differ only by the masses of the
quarks entering in G0

aa (i.e., uū, dd̄, ss̄, cc̄). For a ̸= b, these become homogeneous equations which
only admit the trivial solution Γab = 0, i.e., they will iterate to zero: FCNCs cannot be constructed
with QCD only, and it is the off-diagonal entries in the kernel that generate them. For the same
reason we also cannot compute, say, Γds alone as it would iterate to zero; we need at least one of
the diagonal vertices with a term Γ0

aa in the system.

4

So much for the general ideas, now let’s get into the details. To work out Eq. (11), we need to
establish a few things:

■ In Sec. 4 we will have a closer look at the dressed quark propagator that goes into the BSE,
and how to calculate it self-consistently from its own (Dyson-Schwinger) equation.

■ In Sec. 5 we will work out the BSE for the quark-photon vertex, which describes the coupling
to a photon and with QCD effects only.

The code you got already takes care of these points, i.e., it computes the quark propagator and
the quark-photon vertex. This was part of last year’s internship project, so I simply copied over
the respective descriptions. You will need some elements of these sections to understand what the
code actually does, but for the present project you can jump directly to the next point:

■ In Sec. 6 we will include the weak interactions and see what needs to be generalized to arrive
at the coupled system of equations (11) for the quark-Z-boson vertex.

Two more remarks:

■ In the following we will use a Euclidean metric instead of a Minkowski metric, so the formulas
might look slightly different from what you find in textbooks. More details on Euclidean
conventions can be found in Appendix B.

■ Just in case you’re not overly familiar with gamma matrices yet, don’t worry – in the end all
Dirac traces are worked out explicitly, so all you need to code are scalar equations.
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4 Quark Propagator

The basic quantity that describes a particle in a quantum field theory (QFT) is its propagator.
It tells us how a particle ‘propagates’ from one point in spacetime to another, or after a Fourier
transform, how its modes are distributed in momentum space. For example, the propagator of a
free particle has the form

1

p2 +m2
, (13)

where m is the mass of the particle and p2 is the squared momentum (which is a Lorentz-invariant
variable). This doesn’t tell us much except for the fact that it has a pole for some negative value of
p2 = −m2, which is the free particle pole. Very roughly speaking, this is how a QFT allows us to
extract the mass of some particle or intermediate resonance: When you see a bump or a peak in an
experimental cross section, then this corresponds to a pole in some propagator or some scattering
amplitude, and the momentum or energy where the peak appears defines the mass of that particle.
These poles do not necessarily sit on the real negative p2 axis but they can also appear in the
complex plane p2 ∈ C; in fact, the resonance peaks we observe in experiments correspond to poles
in the complex plane on higher Riemann sheets.

Concerning quarks, the story becomes more interesting for several reasons. First of all, quarks
are spin-1/2 particles which means that the most general possible form of the quark propagator
S(p) according to Lorentz invariance is

S(p)−1 = A(p2)
(
i/p+M(p2)

)
⇔ S(p) =

1

A(p2)

−i/p+M(p2)

p2 +M(p2)2
= −i/p σv(p2) + σs(p

2) . (14)

(See Sec. B for the definition of gamma matrices and slashes.) It is expressed in terms of two
dressing functions, which can be chosen either as A(p2) and the quark mass function M(p2), or
equivalently as the two dressing functions σv(p

2) and σs(p
2) — in any case, two of them are needed

to describe the propagator of a quark. The variable p2 can take any value p2 ∈ C, although in
the following we are mainly interested in real and positive momenta, p2 ∈ R+. For a free spin-1/2
particle, the formulas above simplify to A(p2) = 1 and M(p2) = m, where m is the mass of the
particle; in that case, the propagator becomes

S0(p) =
−i/p+m

p2 +m2
⇔ σv(p

2) =
1

p2 +m2
, σs(p

2) =
m

p2 +m2
. (15)
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For interacting particles we should not expect to find a structure like in Eq. (15), i.e., A(p2) ̸= 1
and M(p2) ̸= m, although in practice they can look quite similar. What makes quarks rather
special is that they are confined inside hadrons, so their analytic structure may look drastically
different. In principle the functions σv(p

2) and σs(p
2) can have (many) poles or branch cuts in

the complex plane of p2, and their analytic structure can tell us something about confinement:
For example, a sufficient confinement criterion is if the quark propagator does not have poles on
the real negative p2 axis but in the complex plane, which prevents a free particle interpretation.
However, the actual analytic structure of the quark propagator in QCD is still unknown.

Light quarks are also special for another reason, because most of their mass is dynamically
generated in QCD through their interactions with gluons. You can see this from the fact that light
u and d quarks have masses of about 3–5 MeV; these are the ‘current-quark’ masses in the QCD
Lagrangian that arise from the Higgs mechanism and are an external input to QCD. However,
the mass of a proton (three quarks) is 940 MeV, which means that 98–99% of the mass of the
proton (and therefore nuclei and atoms) must be somehow produced in QCD. This feature can
be understood through spontaneous chiral symmetry breaking, which is a non-perturbative
effect that cannot be directly seen from the QCD Lagrangian. It emerges through the dynamics
of quarks and gluons, i.e., their interactions cause the quarks to gain mass, and this is encoded in
the mass function M(p2). At large momenta, M(p2) becomes the current-quark mass m, whereas
at small momenta it is much larger (about 300–400 MeV) and thereby defines a ‘constituent-quark
mass’ (Fig. 5), whichs is the relevant mass scale for the proton and other hadrons.

An analogy for this is the magnetization of a magnet as a function of the temperature, where
a magnetization spontaneously occurs below a critical temperature. If an external magnetic field
B is switched on, the magnetization persists also for large temperatures. In QCD, the role of T is
played by the momentum and the analogue of B is the current-quark mass in the Lagrangian.

The fact that this effect is non-perturbative means that we cannot produce it at any order of
perturbation theory. Perturbation theory is one of the main tools to make a QFT useful in
practice; it means that one expands some scattering amplitude around a small coupling parameter
and sums up Feynman diagrams: all one-loop diagrams with all possible intermediate particles,
all two-loop diagrams, etc., and if the couplings are small enough one can stop the series after a
few terms. Perturbation theory works extremely well for the electromagnetic interaction described
by QED since the electromagnetic coupling αQED ≈ 1/137 is indeed very small. For QCD it only
works well as long as we are interested only in very large momenta, where also the strong coupling
αQCD becomes small; this is what allows us to describe high-energy scattering processes in QCD.
However, for small momenta αQCD becomes large and perturbation theory no longer works.

Instead, one can derive theDyson-Schwinger equations (DSEs) from the Lagrangian, which
are the quantum equations of motion of a QFT. They are exact and therefore non-perturbative.
The quark DSE is shown in Fig. 6 and determines the quark propagator S(p):

S(p)−1 = Z2 (i/p+m0) + Σ(p) , (16)

9
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where Σ(p) is the quark self-energy that contains the gluon propagator, the quark-gluon vertex and
again the quark propagator. m0 is the bare current quark mass that enters in the QCD Lagrangian,
and Z2 is the quark renormalization constant. Observe that the equation has the structural form
of Eq. (6), f(x)−1 = 1 − x (the minus is absorbed in the self-energy). Thus, if the QCD coupling
contained in Σ(p) becomes small, we can expand S(p) into a series like in Eq. (7) by reinserting
the equation at every instance where the quark propagator appears inside the loop, and stop after
a few terms — this is the perturbative series for the quark propagator shown in Fig. 7. However,
if the coupling becomes large we have no choice but to solve the equation directly.

The self-energy has the explicit form

Σ(p) = −4g2

3
ZΓ

∫

q

iγµ S(q)Dµν(k) Γν(l, k) (17)

and contains the following ingredients:

■ g is the strong coupling (αQCD = g2/(4π)) and the prefactor 4/3 comes from the color trace.

■ The dressed quark propagator S(q) appears again inside the loop, so the DSE is an integral
equation which determines S(p).

■ The dressed gluon propagator Dµν(k) depends on the gluon momentum k = q − p. We will
work in Landau gauge, where it is given by

Dµν(k) =
Z(k2)

k2
Tµν
k , Tµν

k = δµν − kµkν

k2
, (18)

where Z(k2) is the gluon dressing function and Tµν
k is a transverse projector.

■ The bare quark-gluon vertex g ZΓ iγ
µ comes with a renormalization constant ZΓ.

■ The dressed quark-gluon vertex g Γµ(l, k) depends on the average quark momentum l = (q+p)/2
and the gluon momentum k. In principle it consists of 12 Lorentz-Dirac tensors, but we restrict
ourselves to the rainbow-ladder truncation which is defined by the ansatz

Γµ(l, k) = f(k2) iγµ , (19)

where the dressing function f(k2) depends on the gluon momentum only.

■ The integral measure
∫
q is given by

∫

q

=

∫
d4q

(2π)4
=

1

(2π)4
1

2

L2∫

0

dq2 q2
1∫

−1

dz
√

1− z2

1∫

−1

dy

2π∫

0

dϕ , (20)

where L is the cutoff in the system (a typical value is L = 103 GeV) and we use hyperspherical
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variables:

pµ =
√
p2




0
0
0
1


 , qµ =

√
q2




√
1− z2

√
1− y2 sinϕ√

1− z2
√
1− y2 cosϕ√

1− z2 y
z


 . (21)

Because in the end we will break down the quark DSE into two Lorentz-invariant equations for
A(p2) andM(p2) and the only Lorentz invariants in the system are p2, q2 and p·q =

√
p2
√
q2 z,

the two integrations over the variables y and ϕ become trivial so that only the two integrations
over q2 and z remain. Therefore, we can equivalently work with the vector

qµ =
√
q2




0
0√

1− z2

z


 . (22)

(More on Euclidean conventions and four-vectors can be found in Appendix B.)

Putting things together, we arrive at

Σ(p) =
16π

3
Z2
2

∫

q

α(k2)

k2
Tµν
k γµS(q)γν , α(k2) =

g2

4π

ZΓ

Z2
2

Z(k2) f(k2) , (23)

where the effective interaction α(k2) absorbs the dressing functions of the gluon propagator and
quark-gluon vertex. Because we do not know these quantities (we would need to solve their own
DSEs for that), we employ the following ansatz for α(k2) to solve the quark DSE:

α(k2) = πη7x2 e−η2x +
2πγm

(
1− e−k2/Λ2

t

)

ln

[
e2 − 1 +

(
1 + k2/Λ2

QCD

)2
] , x =

k2

Λ2
, (24)

which is the so-called Maris-Tandy model [2, 3]. The second term with the parameters Λt = 1
GeV, ΛQCD = 0.234 GeV and γm = 12/25 is only relevant for large momenta, where it ensures
the correct perturbative behavior but is otherwise not essential. By contrast, the first term with
the parameters Λ = 0.72 GeV and 1.6 ≲ η ≲ 2 dominates the small-momentum behavior and is
important for the dynamical generation of a quark mass (in practice, you can use η = 1.85).

Solving the quark DSE in practice (more technical)

To work out the explicit form of the quark DSE, we can make it more compact by abbreviating

g(k2) = Z2
2
16π

3

α(k2)

k2
⇒ Σ(p) =

∫
q

g(k2)Tµν
k γµS(q)γν . (25)

Like Eq. (14) for the quark propagator, the most general form of the self-energy determined by Lorentz covariance is

Σ(p) = i/pΣA(p
2) + ΣM (p2) . (26)

If we plug this into the quark DSE and compare the coefficients of the Dirac matrices, we arrive at two coupled
integral equations for the dressing functions A(p2) and M(p2):

A(p2) = Z2 +ΣA(p
2) ,

M(p2)A(p2) = Z2 m0 +ΣM (p2) .
(27)
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It turns out that the self-energy integrals would not converge if we sent the cutoff L in the integrals to infinity; they
are logarithmically divergent in the ultraviolet (UV). This is a general feature of QFTs and has a deeper underlying
meaning, but in practice it just tells us that we must employ renormalization conditions, i.e., we demand that

A(µ2)
!
= 1 , M(µ2)

!
= m, (28)

where m is the renormalized current-quark mass at some arbitrary renormalization point p2 = µ2 (this is the current-
quark mass we should compare to experiment). From Eq. (30), this yields

Z2 = 1− ΣA(µ
2) , m0 =

m− ΣM (µ2)

1− ΣA(µ2)
, (29)

and plugging this back into Eq. (30) yields the final form of the DSEs:

A(p2) = 1 + ΣA(p
2)− ΣA(µ

2) ,

M(p2)A(p2) = m+ΣM (p2)− ΣM (µ2) .
(30)

Through the subtraction, the divergences cancel and A(p2) and M(p2) are finite.
To obtain ΣA(p

2) and ΣM (p2), we take Dirac traces (recall that Tr /p = 0 and /p
2 = p2):

1

4
TrΣ(p) = ΣM (p2) ,

1

4p2
Tr

{
−i/pΣ(p)

}
= ΣA(p

2) . (31)

Applying this to Eq. (25) yields the expressions

ΣA(p
2) =

∫
q

σv(q
2) g(k2)F (p2, q2, z), ΣM (p2) = 3

∫
q

σs(q
2) g(k2) (32)

which involve the quark dressings σv(q
2), σs(q

2) that can be reconstructed from A(q2) and M(q2). The squared
gluon momentum is k2 = p2 + q2 − 2 p · q = p2 + q2 − 2pqz (we now abbreviate p =

√
p2 and q =

√
q2), and the

dimensionless quantity F is given by

p2 F (p2, q2, z) = − 1
4
Tr

{
/p γ

µ
/q γ

ν
}
Tµν
k = p · q + 2

k2
(p · k)(q · k)

= 3 p · q − 2

k2

(
p2 q2 − (p · q)2

)
= 3pqz − 2p2q2

k2
(1− z2)

= −k2 +
p2 + q2

2
+

(p2 − q2)2

2k2
= p2 + 3 p · k + 2

(p · k)2

k2
.

(33)

Either of these forms are equally good to calculate the self-energy integrals, e.g.

F (p2, q2, z) =
3qz

p
− 2q2

k2
(1− z2) . (34)

Eqs. (30) can be solved iteratively. Start with some guess for A(p2) and M(p2) (e.g., set them to 1) and calculate
ΣA(p

2) and ΣM (p2). From there, compute the new functions A(p2), M(p2) according to Eq. (30) and determine
the renormalization constant Z2 from Eq. (29), which enters again in the self-energy in the next step. Repeat the
procedure until it converges. For a spacelike (i.e., positive and real) external momentum p2 ∈ R+, the squared gluon
momentum k2 is also real and positive and the coupled system can be solved without complications.

The renormalized current-quark mass m is an input, and because we do not distinguish between up and down
quarks a typical value for both is mu = md = 4 MeV. These are the renormalized values at the renormalization point
µ = 19 GeV, and they are chosen to reproduce the pion mass obtained with the Maris-Tandy interaction. Likewise,
for strange quarks the respective current quark mass is ms ∼ 90 MeV and for charm quarks it is mc ∼ 800 MeV;
these are fixed by the masses of the D and Ds mesons [4].
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5 Quark-photon vertex

A well-established and time-honored way to probe the internal structure of hadrons is to measure
their electromagnetic form factors. For example, the leading diagram in electron-nucleon
scattering is a one-photon exchange, where a virtual photon couples to the nucleon. In general, the
coupling of a photon to an onshell spin-1/2 fermion with massm is described by the electromagnetic
current matrix element

Jµ(k,Q) = iu(k+)

[
F1(Q

2) γµ − F2(Q
2)

2m
σµνQν

]
u(k−) . (35)

Here, Qµ is the photon four-momentum, kµ± are the outgoing and incoming momenta of the fermion,
σµν = − i

2 [γ
µ, γν ], and u(k±) are the Dirac spinors satisfying the Dirac equation:

/p u(p) = imu(p) , u(p) /p = imu(p) with p2 = −m2 . (36)

Because the fermion is onshell, we have k2± = −m2. If we define the average momentum k by

k± = k ± Q

2
⇒ k2± = k2 +

Q2

4
± k ·Q = −m2 , (37)

then it follows that k2 = −m2 − Q2/4 and k · Q = 0, so that the process is fully characterized
by the squared momentum transfer Q2 ≥ 0. The electromagnetic structure of the fermion is thus
described by its Lorentz-invariant form factors, the Dirac form factor F1(Q

2) and the Pauli form
factor F2(Q

2). For vanishing photon momentum transfer Q2 = 0, the Pauli form factor F2(0)
defines the anomalous magnetic moment of the fermion.

When a photon couples to a hadron, then microscopically it must always couple to a quark.
The elementary quantity is therefore the dressed quark-photon vertex, which describes the
electromagnetic coupling of quarks to photons and thus encodes their electromagnetic properties.
An elementary quark is, however, not onshell and does not have a well-defined mass. This means
we must relax the constraints above, i.e., we neither contract with onshell spinors on the left and
right nor do we impose k2± = −m2. As a result, the general quark-photon vertex depends on three
Lorentz invariants k2, Q2 and k ·Q, and it features a much richer Lorentz-Dirac tensor structure:
Instead of γµ and σµνQν that enter in Eq. (35) it depends on 12 tensors, and instead of two form
factors F1(Q

2) and F2(Q
2) it will thus depend on 12 dressing functions Fi(k

2, k ·Q,Q2) that describe
the electromagnetic properties of the quark.

The kinematics in the quark-photon vertex Γµ(k,Q) are shown in Fig. 8: The vertex depends
on two independent momenta, the incoming quark momentum k− and outgoing momentum k+
(these are four-vectors), or equivalently the photon momentum Q and relative quark momentum k
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which are related by

k± = k ± Q

2
⇔ Q = k+ − k− , k =

k+ + k−
2

⇒ k2± = k2 +
Q2

4
± k ·Q . (38)

The tree-level vertex is given by the Feynman rule in Fig. 8, where e is the unit of electric charge
(in natural units) such that αQED = e2/(4π) ≈ 1/137 is the electromagnetic coupling, Qf = 2/3 or
−1/3 is the electric charge of the respective quark, and Z2 is the quark renormalization constant
from the previous section. In the following we will split off the overall factor eQf and consider the
quark-photon vertex for one flavor only, whose tree-level expression is Z2 iγ

µ.
The full quark-photon vertex depends on 12 linearly independent Lorentz-Dirac tensors. There

is no common convention for them in the literature, but it is convenient to work with the following
decomposition [1]:

Γµ(k,Q) =
4∑

j=1

gj(k
2, ω,Q2) iGµ

j (k,Q) +
8∑

j=1

fj(k
2, ω,Q2) iTµ

j (k,Q) . (39)

Here, the gj(k
2, ω,Q2) and fj(k

2, ω,Q2) are the 12 dressing functions which depend on the three
possible Lorentz invariants k2, ω = k ·Q and Q2, and the Gµ

j and Tµ
j are the corresponding tensors:

Gµ
1 = γµ ,

Gµ
2 = kµ/k ,

Gµ
3 = ikµ ,

Gµ
4 = ω i

2 [γ
µ, /k] ,

Tµ
1 = tµνQQ γ

ν ,

Tµ
2 = ω tµνQQ

i
2 [γ

ν , /k] ,

Tµ
3 = i

2 [γ
µ, /Q] ,

Tµ
4 = 1

6 [γ
µ, /k, /Q] ,

Tµ
5 = tµνQQ ik

ν ,

Tµ
6 = tµνQQ k

ν/k ,

Tµ
7 = ω tµνQk γ

ν ,

Tµ
8 = tµνQk

i
2 [γ

ν , /k] .

(40)

The quantities tµνab are defined by
tµνab = a · b δµν − bµaν , (41)

which is convenient because it entails that

aµ tµνab = a · b aν − a · b aν = 0 , tµνab b
ν = a · b bµ − a · b bµ = 0 . (42)

The commutators are given by

[A,B] = AB −BA , [A,B,C] = [A,B]C + [B,C]A+ [C,A]B . (43)

The decomposition (39) is advantageous for several reasons:

■ The quark-photon vertex must satisfy electromagnetic gauge invariance in the form of the so-called Ward-
Takahashi identity (WTI)

QµΓµ(k,Q) = S(k+)
−1 − S(k−)

−1 , (44)

which relates its longitudinal part with the quark propagator. From Eqs. (42–43) you can see that the tensors
Tµ
j are transverse to the photon momentum Qµ, i.e., QµTµ

j = 0, so they drop out from the WTI. Therefore, the
WTI only affects the dressing functions gj which are completely determined by the quark propagator. Inserting
the decomposition (14), one can easily show that this entails

g1 = ΣA , g2 = 2∆A , g3 = −2∆B , g4 = 0 , (45)

where

ΣA =
A(k2

+) +A(k2
−)

2
, ∆A =

A(k2
+)−A(k2

−)

k2
+ − k2

−
(46)

and likewise for ∆B , where B(p2) = A(p2)M(p2) and k2
+ − k2

− = 2k ·Q = 2ω. Therefore, once we know the two
dressing functions A(p2) and M(p2) of the quark propagator, we already know a great deal about the quark-
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photon vertex! Note in particular that for a tree-level propagator (A = 1, M = m) Eq. (45) reduces to g1 = 1
and all other gj = 0, so the vertex simplifies to

Γµ(k,Q) = iγµ + [transverse part]. (47)

■ The vertex has a charge-conjugation symmetry and must satisfy

Γµ(k,Q) := C Γµ(−k,−Q)T CT !
= −Γµ(k,−Q) , (48)

where C = γ4γ2 is the charge-conjugation matrix and the superscript T denotes a Dirac matrix transpose. One
can show that each individual basis element Gµ

j , T
µ
j satisfies the same relation, i.e., we already chose the basis

to satisfy Eq. (48). As a consequence, the dressing functions gj and fj must be even in the variable ω, i.e., they
can only depend on ω2. This is easily verified for the gj in Eq. (45): If we perform a Taylor expansion with
respect to the variable k2

± from Eq. (38), we find

A(k2
±) = A

(
k2 +

Q2

4
± ω

)
= A

(
k2 +

Q2

4

)
± ωA′

(
k2 +

Q2

4

)
+ . . . , (49)

⇒ ΣA = A

(
k2 +

Q2

4

)
+O(ω2) , ∆A = A′

(
k2 +

Q2

4

)
+O(ω2) , (50)

where the primes denote the derivatives with respect to the arguments.

■ The tensor basis (40) is ‘free of kinematic constraints’, which entails that all dressing functions gj(k
2, ω,Q2) and

fj(k
2, ω,Q2) become constant in either of the kinematic limits Qµ = 0 or kµ = 0. Again, this is easily verified

for the gj since we have

Q2 = 0 : ΣA = A(k2) , ∆A = A′(k2) ,

k2 = 0 : ΣA = A

(
Q2

4

)
, ∆A = A′

(
Q2

4

)
,

(51)

All in all, even without knowing anything about the dynamics of the system, in this way we have derived some very
useful constraints on its dressing functions from symmetry arguments alone.

To calculate the quark-photon vertex dynamically, we must solve itsBethe-Salpeter equation
(BSE) shown in Fig. 4. This is again an exact, nonperturbative equation in QCD. However, it
requires knowledge of the quark-antiquark kernel K, which contains the sum of all possible qq̄
irreducible gluon interactions between the quarks that are mediated by the strong coupling αQCD.
(In principle it also contains the electromagnetic interactions through photon exchanges, but those
are much smaller since they involve αQED.)

In practice we will use again an ansatz for the kernel. However, this ansatz cannot be com-
pletely arbitrary because the kernel is closely linked with the quark propagator. In particular, the
aforementioned property of electromagnetic gauge invariance can only hold if the kernel of the BSE
is consistent with that of the quark DSE. Since we already settled on a rainbow-ladder truncation
for the quark DSE, we must do the same for the vertex BSE. Therefore, we approximate the full
kernel by a gluon exchange between the quark and antiquark, where we use the same effective
interaction from Eqs. (24) and (25). The resulting BSE reads explicitly:

Γµ(k,Q) = Z2 iγ
µ −

∫

k′

g(l2)Tαβ
l γα S(k′+) Γ

µ(k′, Q)S(k′−) γ
β . (52)

Here, k′ is the relative momentum of the vertex inside the momentum loop, k′± = k′ ±Q/2 are the
quark momenta, l = k − k′ is the gluon momentum, and Tµν

l is the transverse projector defined in
Eq. (18). Keep in mind that Γµ(k,Q) is a 4×4 Dirac matrix with another Lorentz index µ = 1 . . . 4.

When you insert the tensor decomposition (39) on both sides of the equation, you can see that
it eventually becomes a coupled system of integral equations for the 12 dressing functions gj and fj .
Since we already know the gj from the quark propagator, Eq. (45), what the BSE really determines
are the eight transverse dressing functions fj which contain the dynamics of the vertex.
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Solving the quark-photon vertex BSE in practice (technical)

In principle, Eqs. (24) and (52) are all we need to solve the vertex BSE numerically. Suppose we write the decompo-
sition (39) as

Γµ(k,Q) =

12∑
j=1

Fj(k
2, ω,Q2) itµj (k,Q) , (53)

with 12 dressing functions Fj ∈ {gj , fj} and corresponding tensors tµj ∈ {Gµ
j , T

µ
j }, and plug this into the BSE. To

project out the Fj on the l.h.s., we contract the equation with the charge-conjugate basis elements t
µ
i , with charge

conjugation defined as in Eq. (48). The tµi are not orthonormal, so we have

Hij(k
2, ω,Q2) =

1

4
Tr

{
t
µ
i (k,Q) tµj (k,Q)

}
̸= δij . (54)

As a result, the BSE turns into

Hij(k
2, ω,Q2)Fj(k

2, ω,Q2) = F 0
i (k

2, ω,Q2) +

∫
k′

Kij Fj(k
′2, ω′, Q2) (55)

with

F 0
j (k

2, ω,Q2) = Z2
1

4
Tr

{
t
µ
i (k,Q) γµ} ,

Kij = g(l2)Tαβ
l

1

4
Tr

{
t
µ
i (k,Q) γα S(k′

+) t
µ
j (k

′, Q)S(k′
−) γ

β
}

.

(56)

The matrices H and K are known, so this is an inhomogeneous linear integral equation for the Fi. Note that it
involves a matrix inversion for H.

There is still a more efficient way to handle the problem. The underlying idea [5] is to construct an orthonormal
basis where Hij = δij , so that we can bypass the matrix inversion. In addition, we will see that the resulting equation
forms two orthogonal subspaces which can be handled independently, and the traces become very simple so we can
work them out directly. To start with, we write down the four-vectors in a given coordinate frame:

Qµ =
√

Q2


0
0
0
1

 , kµ =
√
k2


0
0√

1− z2

z

 , k′µ =
√

k′2


0√
1− z′2

√
1− y2

√
1− z′2 y

z′

 . (57)

How exactly we distribute the components inside the four-vectors is irrelevant because all that matters in the end
are the six possible Lorentz invariants Q2, k2, k′2, k · Q, k′ · Q and k · k′, which determine the system completely
and correspond to the six entries in the vectors, where the three angular variables are related to z, z′, y ∈ [−1, 1].
However, in this way we can define alternative vectors

dµ = Q̂µ =
Qµ√
Q2

, rµ = k̂⊥
µ
=

kµ
⊥√
k2
⊥

, kµ
⊥ = kµ − k ·Q

Q2
Qµ . (58)

If we perform these operations on the four-vectors in Eq. (57), we arrive at

dµ =


0
0
0
1

 , rµ =


0
0
1
0

 , r′
µ
=


0√

1− y2

y
0

 . (59)

In this way, their Lorentz invariants become trivial,

d2 = r2 = r′
2
= 1 , d · r = d · r′ = 0 , r · r′ = y , (60)

and we have
/d = γ4 , /r = γ3 , /r′ =

√
1− y2 γ2 + y γ3 . (61)

Moreover, we can define transversely projected γ−matrices γµ
⊥ by

γµ
⊥ = γµ − dµ /d− rµ /r , (γµ

⊥)
′ = γµ − dµ /d− r′

µ /r′ , (62)

which entails for example
γ1
⊥ = γ1 , γ2

⊥ = γ2 , γ3
⊥ = γ4

⊥ = 0 . (63)
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In this way we can express the quark-photon vertex in the following basis:

Γµ(k,Q) =

12∑
j=1

aj(k
2, z,Q2) iτµ

j (k,Q) (64)

with

τµ
1 = 1√

2
γµ
⊥ ,

τµ
2 = 1√

2
γµ
⊥ /d ,

τµ
3 = 1√

2
γµ
⊥ /r ,

τµ
4 = 1√

2
γµ
⊥ /r /d ,

τµ
5 = rµ 1 ,

τµ
6 = rµ /d ,

τµ
7 = rµ /r ,

τµ
8 = rµ /r /d ,

τµ
9 = dµ 1 ,

τµ
10 = dµ /d ,

τµ
11 = dµ /r ,

τµ
12 = dµ /r /d ,

(65)

which looks a lot simpler than the previous one. In particular, the τµ
i do not depend on any kinematic variable in

the system since they are constructed only from unit vectors. The conjugate basis elements according to Eq. (48)
become

τµ
j = τµ

j . . . j = 1, 5, 6, 7, 9, 10, 11

τµ
j = −τµ

j . . . j = 2, 3, 4, 8, 12
(66)

Then, using the relations

/d
2
= /r

2 = 1 , /r /d = −/d /r , γµ
⊥ /d = −/d γµ

⊥ , γµ
⊥ /r = −/r γ

µ
⊥ , γµ

⊥ γµ
⊥ = 2 (67)

you can verify that we have indeed arrived at an orthonormal basis with the orthonormality relation

1

4
Tr

{
τµ
i τµ

j

}
= δij . (68)

Note that the ‘1’ and ‘2’ appearing in (67) are Dirac matrices, i.e. they are understood to be multiplied by a 4 × 4
unit matrix in Dirac space, hence the 1/4 in the orthogonality relation.

The two decompositions (40) and (65) are completely equivalent, except that (65) no longer satisfies the symme-
tries of the original basis, which means that the aj are no longer even functions in ω =

√
k2

√
Q2z. In any case, one

can work out the linear relations between the two sets of dressing functions; abbreviating s =
√
1− z2, then for the

gj these are

g1 = a10 −
z

s
a11 , g2 =

1

k2 zs
a11 , g3 = − i

kz
a9 , g4 =

i

k2 Qzs
a12 . (69)

One can show that these are consistent with the WTI: If we evaluate Eq. (44) using the decomposition (65), then
only the longitudinal tensors τµ

9...12 survive, which determines the dressing functions a9...12. Plugging them into the
expressions above, the resulting gi are identical to those in Eq. (45). The basis transformations for the fj , on the
other hand, are given by

f1 =
1

Q2 s2

(
a1√
2
+ zs (a6 + a11)− z2 a7 − s2 a10

)
,

f2 = − i

k2 Q3 s2

(
a2√
2
− a8 +

s

z

(
a3√
2
+ a12

))
,

f3 =
i√
2Q

(
−a2 +

z

s
a3

)
,

f4 =
1√

2 kQs
a4 ,

f5 = − i

k Q2 s

(
a5 −

s

z
a9

)
,

f6 = − 1

k2 Q2 s2

(
a1√
2
− a7 +

s

z
a11

)
,

f7 = − 1

k2 Q2 s2

(
a1√
2
− a7 +

s

z
a6

)
,

f8 =
i

k2 Qs2

(
a2√
2
− a8

)
.

(70)

Before applying all this to the BSE (52), let us employ another convenient trick. Let us define

Ψµ(k,Q) = S(k+) Γ
µ(k,Q)S(k−) (71)

as the quark-photon vertex with external quark propagators attached. Since this quantity has the same structural
form as the vertex itself (4 × 4 Dirac matrix, one Lorentz index µ, two momenta k and Q), it must have the same
basis decomposition (64) except with different dressing functions; let us call them bj :

Ψµ(k,Q) =

12∑
j=1

bj(k
2, z,Q2) iτµ

j (k,Q) . (72)
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In this way, we can split the BSE into a two-step process:

Γµ(k,Q) = Z2 iγ
µ −

∫
k′

g(l2)Tαβ
l γα Ψµ(k′, Q) γβ ,

Ψµ(k,Q) = S(k+) Γ
µ(k,Q)S(k−) ,

(73)

which avoids the need for evaluating the quark propagators inside the momentum loop and therefore saves some CPU
time.

If we now insert the vertex decomposition (64) and employ the orthonormality relation (68), we arrive at purely
scalar equations where all Lorentz and Dirac indices have disappeared,

ai(k
2, z, Q2) = Z2 a

0
i −

12∑
j=1

∫
k′

g(l2)Kij(k
2, k′2, z, z′, y,Q2) bj(k

′2, z′, Q2) ,

bi(k
2, z, Q2) =

12∑
j=1

Gij(k
2, z, Q2) aj(k

2, z, Q2) ,

(74)

where a0
i = 1

4
Tr {τµ

i γµ} and the kernel matrix and propagator matrix are given by

Kij(k
2, k′2, z, z′, y,Q2) = Tαβ

l

1

4
Tr

{
τµ
i (k,Q) γα τµ

j (k
′, Q) γβ

}
,

Gij(k
2, z, Q2) =

1

4
Tr

{
τµ
i (k,Q)S(k+) τ

µ
j (k,Q)S(k−)

}
.

(75)

Now you can see the power of using orthonormal bases: Had we used the original basis (40), the kernel matrix
Kij would be a complicated 12× 12 matrix which depends on six variables. However, due to the simplicity of the τµ

i

it simplifies dramatically:

■ Because d · r = d · r′ = d · γ⊥ = d · γ′
⊥ = 0, the equations for the tensors τµ

1...8 decouple completely from those
for the τµ

9...12. That is, both Kij and Gij fall apart into two non-interacting blocks,

K =

 8× 8 0

0 4× 4

 , G =

 8× 8 0

0 4× 4

 , (76)

so that the equations for a1...8 and those for a9...12 can be solved independently. The underlying reason is
the WTI in Eq. (44), which says that the longitudinal part of the vertex defined by the a9...12 is completely
determined by the quark propagator and decoupled from the dynamics.

■ Because of r ·γ⊥ = 0, for the propagator matrix also the blocks for a1...4 and a5...8 decouple. In addition, because
r2 = d2 = 1, the two lower blocks are identical:

G =


G

(1)
4×4 0 0

0 G
(2)
4×4 0

0 0 G
(2)
4×4

 . (77)

This does not happen for the kernel because

r · r′ ̸= 0, r · γ′
⊥ ̸= 0 , r′ · γ⊥ ̸= 0 , (78)

so the equations for a1...4 and a5...8 do not decouple after all. However, they are also not overly complicated
because the τµ

i (k,Q) do not depend on any kinematic variable, and the only kinematic variable that enters in
the τµ

i (k
′, Q) is y. Thus, the trace on the r.h.s. of the kernel in Eq. (75) can only depend on y and nothing else.

■ From the definition of charge conjugation (48) one can show that the matrix G must be symmetric.

■ In addition, the squared photon momentum Q2 is an external variable, i.e., the equations for the ai(k
2, z,Q2) are

solved for each Q2 separately. The kernel K also does not depend on Q2 (which is a consequence of employing a
rainbow-ladder interaction, because the gluon momentum l = k− k′ does not depend on Q) and Q2 only enters
in the propagator matrix G.
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With this the ingredients of the BSE (74) are completely specified. For the integral
∫
k′ in Eq. (20), the innermost

integration over ϕ is trivial. Moreover, the amplitudes aj and bj in Eq. (74) do not depend on the variable y, so one
can integrate over y right away to obtain K′

ij =
∫
dy g(l2)Kij . The strategy to solve the BSE is then as follows:

■ Compute the kernel K′
ij by integrating over y.

■ Loop over Q2, since we want to solve the BSE for each Q2.

■ Solve the transverse (a1...8) and longitudinal (a9...12) equations separately for each Q2. In each case, start with
some initial guess for the ai, calculate the bi by applying the propagator matrix, and determine again the ai by
applying the kernel and integrating over the momentum. Proceed until converged.

■ Convert the ai into the gj and fj from Eq. (39) by applying the formulas (69–70).

Explicit traces

While it is straightforward to compute the traces (75) numerically in the code, an alternative is to work them out
explicitly in advance. In principle this is not necessary, but especially with the orthonormal basis the resulting
expressions are quite manageable. The inhomogeneous term in front of the BSE reads

a0
i =

1

4
Tr {τµ

i γµ} =


√
2 i = 1

1 i = 7, 10
0 else.

(79)

From Eq. (57) the squared gluon momentum is

l2 = (k − k′)2 = k2 + k′2 − 2k · k′ = k2 + k′2 − 2kk′ (zz′ + y
√

1− z2
√

1− z′2) . (80)

To make the following expressions more compact, we define

u = k
√
1− z2 ,

u′ = k′√1− z′2 ,
V =

kz − k′z′

l2
, w =

u2

l2
, w′ =

u′2

l2
, X =

uu′

l2
. (81)

The entries of the kernel matrix then become

K11 = − 1+y2

2
− y (1− y2)X ,

K22 = − 1+y2

2
(1− 2l2V 2) + y (1− y2)X ,

K33 = y(1− 2l2V 2)− (1− y2)X ,

K44 = y + (1− y2)X ,

K55 = 3y ,

K66 = −y (1 + 2l2V 2) ,

K77 = −y2(3− 2l2V 2) + 2y (1− y2)X ,

K88 = y2 − 2y (1− y2)X ,

K16 =
√
2 (1− y2)u′V ,

K61 = −
√
2 (1− y2)uV ,

K17 = − 1−y2
√
2

(1 + 2w′ − 2yX) ,

K71 = − 1−y2
√
2

(1 + 2w − 2yX) ,

K23 =
(
2yu− (1 + y2)u′)V ,

K32 = −
(
2yu′ − (1 + y2)u

)
V ,

K67 = 2y (u′ − yu)V ,

K76 = −2y (u− yu′)V ,

(82)

together with

K28 = K71 +
√
2 (1− y2) ,

K82 = K17 +
√
2 (1− y2) ,

K38 = −K61 ,

K83 = −K16 ,



K99

K10,10

K10,11

K11,10

K11,11

K12,12


=

1

y



K55

K66

K67

K76

K77

K88


(83)

and all other elements zero.
Concerning the propagator matrix, from the general decomposition of the quark propagator

S(k) =
1

A(k2)

−i/k +M(k2)

k2 +M(k2)2
= σv(k

2)
(
−i/k +M(k2)

)
(84)

and the appearance of S(k+) and S(k−) in Eq. (75) it is clear that there will be a common factor σv(k
2
+)σv(k

2
−) in
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front, where the rest can only depend on the mass function, i.e.

Gij(k
2, z,Q2) = σv(k

2
+)σv(k

2
−) G̃ij(k

2, z,Q2) . (85)

In analogy to Eq. (46), we define

ΣM =
M(k2

+) +M(k2
−)

2
, ∆M =

M(k2
+)−M(k2

−)

k2
+ − k2

−
, M

2
= M(k2

+)M(k2
−) . (86)

For the first 4× 4 block, the explicit calculation gives

G̃11 = M
2
+ k2 − Q2

4
,

G̃22 = M
2 − (1− 2z2) k2 − Q2

4
,

G̃33 = M
2
+ (1− 2z2) k2 + Q2

4
,

G̃44 = M
2 − k2 + Q2

4
,

G̃12 = iQ (ΣM − 2k2z2∆M ) ,

G̃13 = −2ik2 Qz
√
1− z2 ∆M ,

G̃14 = −kQ
√
1− z2 ,

G̃23 = 2k2z
√
1− z2 ,

G̃24 = 2ik
√
1− z2 ΣM , ,

G̃34 = ikz (Q2∆M − 2ΣM ) ,

(87)

where the remaining entries are determined from the fact that G is symmetric, i.e., G21 = G12 etc. The remaining
two blocks can be reconstructed from the first block:

G55

G56

G66

G77

G78

G88


=



G99

G9,10

G10,10

G11,11

G11,12

G12,12


=



G44

G34

G33

G22

G12

G11


,


G57

G58

G67

G68

 =


G9,11

G9,12

G10,11

G10,12

 = −


G24

G14

G23

G13

 . (88)

Chebyshev moments

In practice it is also useful to employ a Chebyshev expansion for the angular dependence in the variable z:

f(z) =

∞∑
n=0

fn Un(z), fn =
2

π

1∫
−1

dz
√

1− z2 U∗
n(z) f(z) ,

2

π

1∫
−1

dz
√

1− z2 U∗
m(z)Un(z) = δmn . (89)

The Chebyshev polynomials of the second kind Un(z) are given by

Un(z) :=
sin [(n+ 1) arccos z]√

1− z2
= 2n

n∏
k=1

[
z − cos

k π

n+ 1

]
, (n ≥ 0) (90)

and can also be obtained from the recurrence relation

U0(z) = 1 , U1(z) = 2z , Un(z) = 2z Un−1(z)− Un−2(z) . (91)

The first few Chebyshev polynomials (n ≥ 0) are Un(z) =
{
1, 2z, 4z2 − 1, 8z3 − 4z, 16z4 − 12z2 + 1, . . .

}
. In fact,

the dependence of the fj and gj on z is usually so weak that the zeroth Chebyshev moment is sufficient:

f0
j (k

2, Q2) =
2

π

1∫
−1

dz
√

1− z2 fj(k
2, ω,Q2) . (92)

If we apply this to the BSE (74) and write

ai(k
2, z, Q2) =

∑
m

am
i (k2, Q2)Um(z) , bi(k

2, z,Q2) =
∑
m

bmi (k2, Q2)Um(z) , (93)
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we arrive at the new equations for the Chebyshev moments:

am
i (k2, Q2) = Z2 a

0
i δm0 +

∑
jn

L2∫
0

dk′2 Kmn
ij (k2, k′2) bnj (k

′2, Q2) ,

bmi (k2, Q2) =
∑
jn

Gmn
ij (k2, Q2) an

j (k
2, Q2) ,

(94)

which have now obtained a very compact form. The Chebyshev moments of the kernel and propagator matrix are

Kmn
ij (k2, k′2) =

1

(2π)3
k′2

2

2

π

∫
dz

√
1− z2 U∗

m(z)

∫
dz′

√
1− z′2 Un(z

′)

×
∫

dy g(l2)Kij(k
2, k′2, z, z′, y) ,

Gmn
ij (k2, Q2) =

2

π

∫
dz

√
1− z2 U∗

m(z)Un(z)Gij(k
2, z, Q2) .

(95)

Improving the accuracy

Although the orthonormal basis is simple to implement, it has a disadvantage: While the gi and fi only show a
weak dependence in the angular variable z (remember ω =

√
k2

√
Q2 z), the ai and bi pick up a strong z dependence

by Eqs. (69–70) through factors 1/
√
1− z2 or 1/(1 − z2), which diverge at z → ±1, and this makes a polynomial

expansion in z fairly difficult. For this reason, the numerical results would be actually more accurate if we solved the
BSE directly for the gi and fi, however at the price that we would need a lot more CPU time to do so.

There is, however, a simple way to implement the best of both worlds. Suppose we take the basis (40) and divide
out all factors of k2 and Q2, such that the remaining basis elements t′i

µ
only depend on z (cf. Eq. (57)). This is

equivalent to redefining the gi and fi in terms of functions a′
i:

g1 = a′
9 ,

f1 =
a′
1

Q2
,

f5 =
a′
5

Q2 k
,

g2 =
a′
10

k2
,

f2 =
a′
2

Q3 k2
,

f6 =
a′
6

Q2 k2
,

g3 =
a′
11

k
,

f3 =
a′
3

Q
,

f7 =
a′
7

Q2 k2
,

g4 =
a′
12

Qk2
,

f4 =
a′
4

Qk
,

f8 =
a′
8

Qk2
.

(96)

Then, the dressing functions ai in Eq. (64) are related to the a′
i by a 12× 12 transformation matrix U(z):

ai =

12∑
j=1

Uij a
′
j , Uij =

1

4
Tr

{
τµ
i t′

µ
j

}
. (97)

Applied to the BSE (74), changing the basis to go from ai → a′
i merely amounts to replacing

a0
i → U(z)−1

ij a0
j , K → U(z)−1 K U(z′) , G → U(z)−1 GU(z) , (98)

where K is the kernel in Eqs. (82–83) and G the propagator matrix in Eqs. (87–88). U(z) only depends on the
variable z and is given by

U11 = U19 =
√
2 ,

U17 =
√
2 z2 ,

U22 = U28 = U2,12 =
√
2 iz2 ,

U23 =
√
2 i ,

U32 = U38 = U3,12 =
√
2 isz ,

U44 =
√
2s ,

U55 = U5,11 = is ,

U66 = −U67 = U6,10 = U11,10 = sz ,

U71 = U79 = U10,9 = 1 ,

U76 = U7,10 = s2 ,

U77 = U10,10 = z2 ,

U82 = U8,12 = iz2 ,

U83 = U88 = i ,

U9,11 = iz ,

U12,12 = −isz ,

(99)

with s =
√
1− z2. Note that the new K has U(z′) on the right, i.e. one must replace z → z′ and s → s′ =

√
1− z′2.

(G does not depend on z, here it is U(z) on the right.)
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The inverse of the matrix can be calculated numerically, but since it is also very simple it is faster to enter by
hand. Writing W = U−1, it reads

W11 = −W61 = −W71 = 1√
2 s2

,

W16 = W1,11 = −W9,11 = z
s
,

W17 = − z2

s2
,

W9,10 = −W1,10 = 1 ,

W82 = −W22 = i√
2 s2

,

W23 = − i√
2 sz

,

W28 = −W88 = i
s2

,

W12,12 = −W2,12 = i
sz

,

W10,11 = −W6,11 = −W76 = 1
sz

,

W32 = − i√
2
,

W33 = iz√
2 s

,

W44 = 1√
2 s

,

W55 = − i
s
,

W59 = −W11,9 = i
z
,

W67 = W77 = 1
s2

.

(100)

Note that U is complex, so the new K and G will be complex as well. A simple check after implementing U and U−1

to make sure that everything is correct is to test if UU−1 = 1.
After this the BSE solution works in the same way as before, i.e., nothing else needs to be changed with one

exception: the new K and G no longer decouple into 8×8 and 4×4 blocks, so one needs to solve the BSE as a 12×12
system. In the end, once the system has converged in terms of the a′

i, we must reinstate the Q2 and k2 factors to
obtain the actual dressing functions gi and fi according to Eq. (96) (whereas the basis transformations (69–70) are
no longer needed).

6 Including weak interactions

Now after this warmup, let’s talk business: How do we generalize the BSE from the previous section
to also include W -boson exchanges and arrive at the coupled system (11)?

Quark-photon vertex

To begin with, let us consider again the quark-photon vertex. Each entry K in Eq. (11) has the
structure of Eq. (52), so for the gluon exchanges we don’t need to add anything except enlarging
the matrix. For the W -boson exchanges, we need to know the Feynman rules for the W boson
coupling to quarks. These are given by

𝑊

𝜇, 𝑎 

�

𝑑�𝑢�

ig√
2
γµPL (VCKM)ij ,

𝑢�

𝑊

𝜇, 𝑎 

�

𝑑�

ig√
2
γµPL (V ∗

CKM)ij . (101)

Here, ui stands for u-type quarks (u, c, t) and dj for d-type quarks (d, s, b). g is not the QCD
coupling from earlier but rather the SU(2) weak isospin coupling, which is related to the electric
charge e and the Weinberg angle θW and thus to the W - and Z-boson masses:

g =
e

sin θW
, cos θW =

mW

mZ
, e =

√
4παQED . (102)

Using

mW = 80.4GeV , mZ = 91.2GeV , αQED =
1

137.036
(103)
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one can extract g. The chiral projectors PL and PR are defined by

PL =
1− γ5

2
, PR =

1+ γ5
2

, (104)

which entails γµPL = PRγ
µ. (VCKM)ij are the CKMmatrix elements for the generations i, j = 1, 2, 3

(see Appendix A for details). Furthermore, the W -boson propagator is given by

𝑊 Tµν
k

k2 +m2
W

+
ξWL

µν
k

k2 + ξWm2
W

ξW=1−−−−→ δµν

k2 +m2
W

, (105)

with the transverse projector Tµν
k = δµν − kµkν/k2 and the longitudinal projector Lµν

k = kµkν/k2.
The gauge parameter ξW is arbitrary and should not affect observables. We will use the Feynman-
’t Hooft gauge with ξW = 1 because here the propagator becomes maximally simple.

There is a catch, though, because depending on the choice of gauge unphysical Higgs degrees of
freedom (the ‘Goldstone modes’) can propagate internally and we need to take them into account.
These unphysical particles drop out in the unitary gauge (ξW → ∞) usually discussed in the
textbooks; however, in the unitary gauge the propagator does not fall off fast enough with k2 and
therefore its renormalization properties are not obvious. Therefore, to eachW± exchange we should
add an exchange of a φ± Goldstone particle, whose Feynman rules are given by

𝜑

𝜇, 𝑎 

�

𝑑�𝑢�

g√
2

muiPL −mdjPR

mW
(VCKM)ij ,

𝜑

𝜇, 𝑎 

�

𝑑� 𝑢�

g√
2

muiPR −mdjPL

mW
(V ∗

CKM)ij ,

𝜑

𝜇, 𝑎 

� 1

k2 + ξWm2
W

ξW=1−−−−→ 1

k2 +m2
W

.

(106)

With this we can write down the explicit expressions for the M kernels that appear in Eq. (11)
and which are shown in Fig. 9. The top right block in Eq. (11) belongs to transitions from u to
d-type quarks and the bottom left block to transitions from d to u-type quarks. Using the Feynman
rules above and writing VCKM = V , we have

Mcd
abΨcd → −g

2

2
VacV

∗
bd

∫

k′

1

l2 +m2
W

[
γαPLΨµ

cd(k
′, Q)PR γ

α

− 1

m2
W

(maPL −mcPR)Ψ
µ
cd(k

′, Q) (mbPR −mdPL)
] (107)

for the top right block. The bottom left block is identical except for the replacement

VacV
∗
bd → V ∗

caVdb . (108)
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𝑊 𝜑

𝑎

𝑏

𝑐

𝑑

= +ℳ

Figure 9: Off-diagonal kernels in the vertex BSE. ab and cd can be different flavors, but they must
be of the same type and carry the same charge. For ab ∈ {uu, uc, cu, cc} and cd ∈ {dd, ds, sd, ss}
these are the top right kernels in Eq. (11), for the bottom left kernels the situation is reversed.

From here it is straightforward to work out the traces in analogy to Eqs. (74)–(75). With the
replacement

g(l2) → g̃(l2) =
g2

2

1

l2 +m2
W

(109)

we can directly take over Eq. (74); the propagator matrix Gij is the same as before and only the
kernel is different:

Kij → VacV
∗
bd (Mcd

ab)ij . . . top right block,

Kij → V ∗
caVdb (Mcd

ab)ij . . . bottom left block,
(110)

where

(Mcd
ab)ij =

1

4
Tr

{
τµi (k,Q) γαPL τ

µ
j (k

′, Q)PR γ
β
}

− 1

4m2
W

Tr
{
τµi (k,Q) (maPL −mcPR) τ

µ
j (k

′, Q)(mbPR −mdPL)
}
.

(111)

One can also work out the explicit traces in analogy to Eq. (82), which gives

(Mcd
ab)11 = −c 1 + y2

2
, (Mcd

ab)44 = −(Mcd
ab)66 = −(Mcd

ab)11,11 = cy ,

(Mcd
ab)55 = 2dy , (Mcd

ab)77 = −cy2 , (Mcd
ab)99 = 2d , (Mcd

ab)10,10 = −c ,

(Mcd
ab)17 = (Mcd

ab)71 = −c 1− y2√
2

,

(112)

with all other matrix elements zero, where we abbreviated

c = 1− mamb +mcmd

m2
W

, d =
mamd +mbmc

m2
W

. (113)

With this you have all the tools to compute the quark-photon vertices including their flavor-
changing components. For each component Γµ

ab(k,Q) there are twelve dressing functions as defined
in Eq. (39), gabj (k2, ω,Q2) and fabj (k2, ω,Q2), so if we include two generations of quarks (up, down,
strange, charm) this amounts to 12× 8 = 96 dressing functions for the whole coupled system. To
solve this system, we need to pay attention to the Feynman rule in Fig. 8: In the previous section
we split off the factor eQf since we only considered one quark flavor. For the coupled system we
can still drop the overall factor e, but we need to include the fermion charges Qf in the tree-level

terms Γµ,0
ab that enter in the equations.
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All in all, the coupled BSEs (11) can be written in the following compact form:

[
aabi

aabi

]
= Z2 a

0
i

[ 2
3δab

− 1
3δab

]
−
∫

k′

[
δacδbd g(l

2)Kij VacV
∗
bd g̃(l

2) (Mcd
ab)ij

V ∗
caVdb g̃(l

2) (Mcd
ab)ij δacδbd g(l

2)Kij

][
bcdj

bcdj

]
,

[
babi

babi

]
=

[
Gab

ij 0

0 Gab
ij

][
aabj

aabj

]
.

(114)

In the upper block, the superscript ab stands for {uu, uc, cu, cc} and in the lower block it stands for
{dd, ds, sd, ss}. This is the generalization of Eqs. (74)–(75). a0i , Kij and Gij are given in Eqs. (79)
and below, and the (Mcd

ab)ij are given in Eq. (112). For the CKM matrix elements, see Appendix A.
Concerning the Gab

ij , the superscript ab only distinguishes the different quark masses that enter in
the propagators (uu, uc, cu, . . . ), which means that in Eqs. (85–86) you need to distinguish

Quark a : σv(k
2
+), M(k2+) , Quark b : σv(k

2
−), M(k2−) , (115)

which are obtained from different DSE solutions.

Z-boson vertex

For the Z-boson vertex things get more complicated. The reason is the structure of its tree-level
Feynman rule, which reads

𝑍

𝜇, 𝑎 

𝑓 𝑢𝑢
𝑑𝑑

e
If3PL −Qf sin

2 θW
sin θW cos θW

Z2 iγ
µ . (116)

Here, If3 is the weak isospin 3-component of the quark and Qf its charge:

u, c, t : If3 =
1

2
, Qf =

2

3
; d, s, b : If3 = −1

2
, Qf = −1

3
. (117)

The difficulty comes from the left-handed projector PL = (1− γ5)/2, which implies that the vertex
no longer has a definite parity. For the quark-photon vertex, γ5 terms did not appear because it
had a definite parity, but for the Z−boson vertex this is no longer the case. As before, we split off
the global factor e; using sin 2θW = 2 sin θW cos θW , the tree-level vertex takes the form

Γµ
0 =

If3PL −Qf sin
2 θW

sin θW cos θW
Z2 iγ

µ =
If3 − 2Qf sin

2 θW
sin 2θW

Z2 iγ
µ +

If3
sin 2θW

Z2 iγ
µγ5 . (118)

Therefore, the tensor decomposition (39–40) is no longer sufficient and we also need to include γ5
terms, and the resulting vertex has 24 tensors instead of 12.

Let’s start with the orthonormal basis of Eq. (64). Its general decomposition reads

Γµ(k,Q) =

24∑

j=1

aj(k
2, z,Q2) iτµj (k,Q) , τµ13...24 = τµ1...12 γ5 , τµ13...24 = γ5 τ

µ
1...12 . (119)

Fortunately, the additional blocks for K, G and M are not overly complicated. The kernel K and
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propagator matrix G generalize to

K =


 K 0

0 −K


 , G =


 G 0

0 G′


 , (120)

where each block is a 12 × 12 matrix. The off-diagonal blocks are zero, so if we only considered
QCD effects the positive- and negative-parity equations would simply decouple. (Note that this
is all for one quark flavor; the full K and G matrices then enter as blocks in the flavor-coupled
BSE (114)). G′ has the same structure as Eq. (85),

G′
ij(k

2, z,Q2) = σv(k
2
+)σv(k

2
−) G̃

′
ij(k

2, z,Q2) , (121)

except with

G̃′
11 =M

2 − k2 + Q2

4 ,

G̃′
22 =M

2
+ (1− 2z2) k2 + Q2

4 ,

G̃′
33 =M

2 − (1− 2z2) k2 − Q2

4 ,

G̃′
44 =M

2
+ k2 − Q2

4 ,

G̃′
12 = −ikz (Q2∆M − 2ΣM ) ,

G̃′
13 = 2ik

√
1− z2ΣM , ,

G̃′
14 = k Q

√
1− z2 ,

G̃′
23 = −2k2z

√
1− z2 ,

G̃′
24 = −2ik2Qz

√
1− z2∆M ,

G̃′
34 = −iQ (ΣM − 2k2z2∆M ) .

(122)

The remaining entries are still determined from the fact that G is symmetric, i.e., G21 = G12 etc.,
and Eq. (88) still holds.

In turn, the tree-level vertex now contributes to more dressing functions in the inhomogeneous
term. Eq. (79) still holds because the mixed-parity terms are zero, but because of Eq. (118) the
inhomogeneous term in the equation generalizes to

Z2 a
0
i →

Z2

sin 2θW

[
(If3 − 2Qf sin

2 θW ) a0i
If3 a

0
i

]
, (123)

with 12 entries in the upper block and 12 entries (those corresponding to γ5) in the lower block. In
each block there are only three non-zero entries, as given by Eq. (79), so this makes six non-zero
entries in total.

The only non-zero off-diagonal blocks appear in the M kernels, because theW -boson exchanges
couple together the γµ and γµγ5 terms:

Mcd
ab =


 Mcd

ab M̃cd
ab

−M̃cd
ab −Mcd

ab


 . (124)

The M̃cd
ab are identical to the Mcd

ab in Eq. (112) except for the replacements

c → c̃ = 1− mamb −mcmd

m2
W

, d → d̃ = −mamd −mbmc

m2
W

. (125)
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Using these relations, the BSE can be solved for the dressing functions aj . What remains to be
done is to establish the analogue of the basis (39) for the 24-dimensional case. To do so, we write

Γµ(k,Q) =

4∑

j=1

gj(k
2, ω,Q2) iGµ

j (k,Q) +

8∑

j=1

fj(k
2, ω,Q2) iTµ

j (k,Q)

+
12∑

j=5

gj(k
2, ω,Q2) iGµ

j (k,Q)γ5 +
12∑

j=9

fj(k
2, ω,Q2) iTµ

j (k,Q)γ5 ,

(126)

where

Gµ
5 = γµ ,

Gµ
6 = kµ/k ,

Gµ
7 = iω kµ ,

Gµ
8 = i

2 [γ
µ, /k] ,

Gµ
9 = iQµ ,

Gµ
10 = Qµ /Q ,

Gµ
11 = ωQµ/k ,

Gµ
12 = Qµ i

2 [/k, /Q] ,

Tµ
9 = ω i

2 [γ
µ, /Q] ,

Tµ
10 = 1

6 [γ
µ, /k, /Q] ,

Tµ
11 = ω tµνQk γ

ν ,

Tµ
12 = ω tµνQk

i
2 [γ

ν , /k] .

(127)

The basis transformations aj → gj , fj (the generalizations of Eqs. (69)–(70)) are then given by

g5 =
1

s2

(
a13√
2
+ zs a18 − z2 a19

)
,

g6 = − 1

k2 s2

(
a13√
2
− a19

)
,

g7 = − i

k2Qz s
a17,

g8 = − i

k s2

(
z a14 + s a15√

2
− z a20

)
,

g9 =
i

Q s
(z a17 − s a21) ,

g10 = − 1

Q2 s2

(
a13√
2
− z2 a19 − s2 a22 + zs (a18 + a23)

)
,

g11 =
1

k2Q2 z s2

(
z

(
a13√
2
− a19

)
+ s a23

)
,

g12 = − i

k Q2 s2

(
z

(
a14√
2
− a20

)
+ s

(
a15√
2
+ a24

))
.

f9 = − i√
2 k Q2 z s

(s a14 − z a15) ,

f10 =
1√

2 k Qs
a16,

f11 = − 1

k2Q2 z s2

(
z
a13√
2
+ s a18 − z a19

)
,

f12 =
i

k3Q2 z s2

(
a14√
2
− a20

)
,

(128)

Improving the accuracy

In the final step, we would like to implement the analogues of Eq. (96) and below, i.e., solve the BSE directly in
terms of functions a′

j which only differ from the gj and fj by factors of k and Q. Because the gj , fj depend only
weakly on z, the same is true for the a′

j and thus we can get away with a small number of Chebyshev moments (or
equivalently a small number of grid points in z).

For the quark-photon vertex with its 12 components you can directly take over the relations below Eq. (96) since
this is all you need. For the quark-Z-boson vertex, however, there are twice as many tensors and so these relations
need to be generalized. We employ the same strategy as before, i.e., we divide out factors of k and Q from the tensor
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basis (127) to arrive at tensors t′µj with respective dressing functions a′
j :

g5 = a′
13 ,

g9 =
a′
17

Q
,

f9 =
a′
21

Q2 k
,

g6 =
a′
14

k2
,

g10 =
a′
18

Q2
,

f10 =
a′
22

Qk
,

g7 =
a′
15

Qk2
,

g11 =
a′
19

Q2 k2
,

f11 =
a′
23

Q2 k2
,

g8 =
a′
16

k
,

g12 =
a′
20

Q2 k
,

f12 =
a′
24

Q2 k3
.

(129)

Then, the dressing functions aj in Eq. (119) are related to the a′
j by a 24× 24 transformation matrix U(z):

ai =

24∑
j=1

Uij a
′
j , Uij =

1

4
Tr

{
τµ
i t′

µ
j

}
. (130)

The off-diagonal blocks in U vanish due to the extra γ5 that appears in the trace, therefore

U =

(
U 0
0 U ′

)
⇒ W = U−1 =

(
U−1 0

0 U ′−1

)
=

(
W 0
0 W ′

)
. (131)

The upper left block U is identical to Eq. (133), so what remains to be calculated is the additional lower right block
U ′. As before, changing the basis to go from ai → a′

i merely amounts to replacing

a0
i → W(z)ij a

0
j , K → W(z)KU(z′) , M → W(z)MU(z′) , G → W(z)GU(z) . (132)

U ′(z) is given by

U ′
11 =

√
2 ,

U ′
1,11 =

√
2 z2 ,

U ′
24 = U ′

29 =
√
2 iz ,

U ′
84 = U ′

89 = U ′
8,12 = iz ,

U ′
62 = U ′

11,2 = U ′
11,7 = −U ′

6,11 = sz ,

U ′
71 = U ′

10,1 = U ′
10,6 = 1 ,

U ′
7,11 = U ′

10,2 = U ′
10,7 = z2 ,

U ′
12,8 = −U ′

12,4 = is ,

U ′
2,12 =

√
2 iz3 ,

U ′
34 =

√
2 is ,

U ′
3,12 =

√
2 isz2 ,

U ′
4,10 =

√
2 s ,

U ′
53 = isz ,

U ′
72 = s2 ,

U ′
93 = iz2 ,

U ′
95 = i ,

(133)

with s =
√
1− z2. Note again that the new K and M have U(z′) on the right, i.e. one must replace z → z′ and

s → s′ =
√
1− z′2. G does not depend on z, here it is U(z) on the right. The inverse matrix W ′ reads

W11 = W71 = −W21 = −W61 = 1√
2 s2

,

W16 = −W66 = −W6,11 = z
s
,

W67 = −W17 = z2

s2
,

W27 = W11,7 = 1
s2

,

W42 = W82 = − iz√
2 s2

,

W93 = −W43 = −W83 = i√
2 s

,

W48 = W88 = iz
s2

,

W7,11 = −W11,6 = 1
sz

,

W35 = − i
sz

,

W55 = iz
s
,

W59 = −i ,

W6,10 = 1 ,

W77 = − 1
s2

,

W8,12 = − i
s
,

W92 = − i√
2 z

,

W10,4 = 1√
2 s

,

W11,1 = − 1√
2 s2

,

W12,2 = i√
2 s2z

,

W12,8 = − i
s2z

.

(134)

In the end, once the system has converged in terms of the a′
i, we must reinstate the Q2 and k2 factors to obtain the

actual dressing functions gi and fi according to Eqs. (96) and (129).
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p,Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q+Q′) ,

∆ = Q−Q′ = pf − pi , (8)

with the inverse relations

pi = p− ∆
2 ,

pf = p+ ∆
2 ,

Q = Σ+ ∆
2 ,

Q′ = Σ− ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 +Q′2

2m2
, η− =

Q ·Q′

m2
, ω =

Q2 −Q′2

2m2
,

λ =
p · Σ
m2

=
p ·Q
m2

=
p ·Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ ·∆ = m2 (η+ ± ω),

Q ·Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
The variables η+, η− and ω also admit a simple geo-

metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√
Σ2) and the subscript ‘T’ stands for a transverse

projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2+ − η2−
,

λ = −Y

2

√
ω2 + η2− − η2+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2− < η2+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].
We can also localize the various kinematic limits in this

plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 10: K+ → π+ and B+ → K+ transition matrix elements

7 Transition matrix elements and flavor anomalies

Ok! If we make it to this point by the end of the summer, you accomplished a lot: you calculated
the nonperturbative quark-photon and quark-Z-boson vertex in terms of their dressing functions
fj(k

2, ω,Q2) and gj(k
2, ω,Q2). Now, depending on how fast things go, we may consider to imple-

ment this in the calculation of an actual observable, like the K → π and B → K matrix elements
in Fig. (10). The quantities to extract from there are the transition form factors FK→π(Q

2)
or FB→K(Q2), in analogy to the electromagnetic form factors for fermions in Eq. (35). Without
internal W bosons, these form factors would be zero since a photon or Z boson cannot change the
flavor, so they will be very small. Nevertheless, such transition form factors are just the information
we need to pin down the QCD contributions to flavor anomalies.

As an example, the LHCb collaboration recently found 3.1σ evidence for the violation of lepton
universality in B+ → K+l+l− decays [6]. In particular, the branching ratio

RK =
B(B+ → K+µ+µ−)

B(B+ → K+e+e−)
, (135)

slightly differs from 1, although in the SM it should be exactly 1 because electrons and muons have
the same interaction strengths. In principle such a difference could be induced by new particles
with new interactions beyond the SM. However, although QCD effects should drop out from this
ratio, the electrons and muons have different masses and the form factor is therefore tested at
different (timelike) values of Q2, so there could be residual effects from QCD.

I will leave this part for later since it requires some additional information:

■ We need the dressed quark propagators for up, down, strange, . . . – which we have, since you
already needed them to calculate the vertices.

■ For the s→ d transition we can use what we have, but for the b→ s vertex you would need to
include all three fermion generations to solve the BSE.

■ We need the π, K, . . .meson Bethe-Salpeter amplitudes – which you didn’t calculate, but we
have numerical results for them which you can use to calculate the matrix elements.

■ The complication is that internally we need the quark propagators, the quark-photon vertex
and the quark-Z-boson vertex for complex momenta, i.e., complex k2, but so far you computed
the vertex only for real and positive k2. Although implementing complex k2 is in principle
straightforward, this goes beyond what we want to do here. Therefore, with the input we have
we can obtain the transition form factor only for (unphysical) real and positive values of the
incoming and outgoing momenta, P 2

i > 0 and P 2
f > 0, whereas we need them at the physical

onshell values P 2
i = −m2

K and P 2
f = −m2

π. One way to proceed would be to analytically
continue the form factor using Padé approximants or the so-called Schlessinger-point method
(SPM); this should not be difficult to implement but let’s see if we get there.
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A CKM matrix

The CKM matrix is a unitary N ×N matrix and thus depends on N2 real parameters. 2N − 1
of those are physically not significant, because one phase can be absorbed into each quark field but
the matrix is independent of a common phase. Hence, the total number of independent variables
is N2− (2N − 1) = (N − 1)2. Of these, N(N − 1)/2 are rotation angles called quark mixing angles,
and the remaining (N − 2)(N − 1)/2 are complex phases which cause CP violation.

For N = 2 there is only one parameter, the Cabbibo angle θ12 which is a mixing angle between
two generations of quarks. For N = 3, which is the case of the Standard Model, we have

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 , (136)

which can be expressed in terms of three mixing angles θ12, θ23, θ13 and one CP-violating phase δ.
In the ‘standard parametrization’, the CKM matrix is written as:

VCKM =




1 0 0
0 c23 s23
0 −s23 c23







c13 0 s13 e
−iδ

0 1 0
−s13 eiδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1




=




c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13
s12 s23 − c12 c23 s13 e

iδ −c12 s23 − s12 c23 s13 e
iδ c23 c13




(137)

with sij = sin θij and cij = cos θij . In practice it turns out that

s13 ≪ s23 ≪ s12 ≪ 1 , (138)

which motivates the Wolfenstein parametrization with four parameters λ, A, ρ and η:

s12 = λ , s23 = Aλ2 , s13 e
iδ = Aλ3(ρ+ iη) =

Aλ3(ρ̄+ iη̄)
√
1−A2λ4√

1− λ2 [1−A2λ4(ρ̄+ iη̄)]
. (139)

With this the CKM matrix can be expanded in powers of λ:

VCKM =




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) . (140)

One can see that the dominant transitions are Vud, Vcs, Vtb, followed by the subleading transitions
Vus and Vcd which are of O(λ), and all further transitions are suppressed with at least O(λ2).

The PDG values for the Wolfenstein parameters are (rounded)

λ = 0.225, A = 0.83, ρ̄ = 0.12, η̄ = 0.35 , (141)

from where the CKM elements can be reconstructed.
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B Formulas

We use a Euclidean metric throughout all calculations. If you are used to Minkowski space
(which is what you would learn in a relativistic QM or QFT course), this may need some getting
used to. However, chances are that you are actually not yet all too familiar with it anyway, so we
can just jump to Euclidean space directly because this is how most actual calculations are done in
practice. (In case you already know a bit about QFT, then you may have heard that for practical
calculations one has to do a ‘Wick rotation’ to Euclidean space, but one can equivalently start from
a Euclidean QFT directly.)

The basic idea is to collect space and time into a four-vector, where the fourth component
stands for imaginary time:

xµ =

[
x
ix0

]
, x0 = t . (142)

(We always use natural units where c = ℏ = 1.) In momentum space, for an onshell particle the
fourth component then takes the meaning of imaginary energy:

pµ =

[
p
ip0

]
, p0 = Ep =

√
p2 +m2 ⇒ p2 =

4∑

µ=1

pµpµ = −m2 . (143)

We follow the Einstein summation convention, i.e., two Lorentz indices are always summed over:
p2 = p · p = pµpµ, p · q = pµqµ etc. There is also no distinction between upper and lower Lorentz
indices since in Euclidean space all four directions are on equal footing.

As already mentioned earlier, it is convenient to express four-momenta through hyperspherical
coordinates,

pµ =
√
p2




√
1− z2

√
1− y2 sinϕ√

1− z2
√

1− y2 cosϕ√
1− z2 y
z


 =




sinψ sin θ sinϕ
sinψ sin θ cosϕ
sinψ cos θ
cosψ


 , (144)

which are the straightforward generalizations of spherical coordinates to four dimensions. The
point is that in loop calculations in QFT the particles are not onshell but virtual, which means
their p2 > 0 is positive or ‘spacelike’ (hence the need for going to Euclidean space). Correspondingly,
a four-momentum integration reads

∫

p

=

∫
d4p

(2π)4
=

1

(2π)4
1

2

∞∫

0

dp2 p2
1∫

−1

dz
√

1− z2

1∫

−1

dy

2π∫

0

dϕ , (145)

where one can equivalently write

1

2

∞∫

0

dp2 p2 =

∞∫

0

dp p3 . (146)

If we want to compute things onshell (for ‘real’ particles), we must remember that in this case p2 < 0
(‘timelike’), which comes with additional complications because pµ must have some imaginary
components. For example, an onshell particle (p2 = −m2) in the rest frame (p = 0 ⇒ Ep = m)
has the four-vector

pµ = im

(
0
1

)
. (147)
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Figure 11: Lorentz and Dirac indices in momentum loops

We also frequently employ gamma matrices, which are needed for the description of fermions
with spin 1/2 (such as quarks, electrons, muons, . . . ). These are 4 × 4 matrices, which in the
standard representation have the form

γk =

(
0 −iτk
iτk 0

)
, γ4 =

(
1 0
0 −1

)
, γ5 =

(
0 1

1 0

)
, (148)

where k = 1, 2, 3 and the τk are the 2× 2 Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (149)

The Euclidean gamma matrices satisfy

{γµ, γν} = 2δ µν , γµ = (γµ)† , γ5 = −γ1γ2γ3γ4 , (150)

where {A,B} = AB+BA is the anticommutator. We also make frequent use of the Feynman slash
notation:

/p = p · γ = pµγµ . (151)

This entails /p2 = p2 because

/p
2 = pµpνγµγν = pµpν

(
1

2
[γµ, γν ] +

1

2
{γµ, γν}

)
= 0 + pµpνδµν = pµpµ = p2 . (152)

The point is that spin-1/2 particles are described by Dirac spinors with Dirac indices α = 1 . . . 4.
As a consequence, a quantity with an incoming and outgoing quark leg (like the quark propagator,
quark-photon vertex etc.) has two Dirac indices α, β and thus it must be a 4× 4 matrix in Dirac
space. The gamma matrices provide a complete basis in Dirac space. For example, the only possible
basis elements for a spin-1/2 propagator, which depends on one momentum pµ, are 1 and /p. Hence
there are two Lorentz-invariant dressing functions A(p2) and M(p2). The quark-photon vertex has
an additional Lorentz index because the photon has spin 1, and in this case there are 12 possible
tensors which can be expressed through any of the bases (40), (65) or linear combinations thereof.

When you draw a Feynman diagram, you write down all Dirac and Lorentz indices and follow
the fermion lines from the tip of the ‘spin arrow’ to its end like in Fig. 11:

∫

q

γµαγ Sγδ(q) γ
ν
δβ D

µν(k) =

∫

q

{γµ S(q) γν}αβ Dµν(k) ,

∫

q

γµαβ Sβγ(q+) γ
ν
γδ Sδα(q−) =

∫

q

Tr {γµ S(q+) γν S(q−)} .
(153)
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In this way, a closed fermion loop amounts to taking a Dirac trace. The traces of gamma matrices
are easy to work out using the formulas

Tr1 = 4 ,

Tr γµ = 0 ,
1
4 Tr {γµγν} = δµν ,

Tr {γµγνγρ} = 0 ,
1
4 Tr {γµγνγργσ} = δµνδρσ + δµσδρν − δµρδνσ ,

(154)

etc. In particular, the trace over an odd number of gamma matrices vanishes (we used this property
several times in the previous sections). This also implies

Tr /p = 0 ,
1
4 Tr {/p /q} = p · q ,
Tr {/p /q /k} = 0 ,

1
4 Tr {/p /q /k /l} = (p · q)(k · l) + (p · l)(k · q)− (p · k)(q · l) .

(155)

Using these formulas, we can do almost all calculations without the need for knowing the explicit
form of the gamma matrices from Eq. (148).

Another matrix we defined in Sec. 5 is the charge conjugation matrix, which satisfies

C = γ4γ2, CT = C† = C−1 = −C. (156)
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