
Modelling of Neutron Stars
Robert Chambers and Pau Petit Rosàs
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Abstract

The aim of this report is to model a white dwarf and a neutron star using both Newtonian and

Tolman-Oppenheimer-Volkov equations. The behaviour of this simulation is tested for different

central pressures and inner types of Fermi gases. In addition, a model of how the star would

deform under angular velocity is presented and interpreted.



1 Introduction

A white dwarf star is the remaining core of a massive star after it has expelled most of its outer

mass due to its inability to support the weight of its own gravity once it has run out of nuclear

fuel. The remaining core has a mass comparable to that of the Sun but a radius similar to that of

the Earth, making it extremely dense. The star is now supported by electron degeneracy pressure

rather than the thermal pressure of main sequence stars; a phenomenon explained by the Pauli

exclusion principle. If the star has mass higher than ∼ 1.4 solar masses (called the Chandrasekhar

limit for white dwarfs) after it collapses, the final form will be a neutron star. Neutron stars have

an approximate radius of 17km making them one of the most dense objects in the universe. The

extreme gravity is supported by neutron degeneracy pressure. If the massive of a neutron star

exceeds ∼ 2 solar masses, the neutron degeneracy pressure can no longer support the star and

it will collapse into a black whole. This limit is called the Tolman-Oppenheimer-Volkov limit

and is the analogue of the Chandrasekhar limit for white dwarfs. The degenerate gas model is

the one that we will be exploring in our project. At first we will solve the coupled equations of

state and Newtonian structure equations for a static star for pressure and mass as functions of

distance from center,r. Then a rotating perturbation can be added. This perturbation of the

star will remove polar symmetry and distort the star into a spheroid that we can then recreate

on a 3D model.

2 Theory

2.1 Non-Rotating Model

For our model we wanted to find the pressure, p, and mass, M , of the neutron star as a function

of radius, r, for a given initial condition on central pressure. The coupled equations (1),(2) can

be classically derived for a spherically symmetric gas of isotropic material in gravitational static

equilibrium. Equation (3) is energy density in terms of material density according to Einstein’s

equation from special relativity.

dp

dr
= −Gρ(r)M(r)

r2
= −Gε(r)M(r)

c2r2
, (1)

dM

dr
= 4πr2ρ(r) =

4πr2ε(r)

c2
, (2)

ε(r) = ρ(r)c2. (3)

For a purely classically gas these equations would suffice but for special and general relativistic

corrections the Tolman-Oppenheimer-Volkov (TOV) equation is required:

dp

dr
= −Gε(r)M(r)

c2r2

[
1 +

p(r)

ε(r)

] [
1 +

4πr3ρ(r)

M(r)c2

] [
1− 2GM(r)

c2r

]−1
. (4)

We assume a Fermi Gas Model which allows us to couple pressure and energy density through

the Fermi momentum [1]. The relation p = Kεγ that comes from this model is a polytrope. In
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the relativistic limit the exponent, γ, is 4
3 , and in the non-relativistic limit is 5

3 . The value of K

changes for each polytropic equation of state. These are given by:

Knon−rel =
h̄2

15π2me

(
3π2Z

AmNc2

)5/3

(5)

Krel =
h̄c

12π2

(
3π2Z

AmNc2

)4/3

(6)

Both p and ε have dimensions of energy density and can be cast into a dimensionless form, as

well as mass. We get

dp̄(r)

dr
= −αp̄(r)

1
γ M̄(r)

r2
, (1’)

dM̄(r)

dr
= βr2p̄(r)1/γ , (2’)

and

dp̄(r)

dr
= −−αM̄(r)p̄(r)−1/γ

r2

[
1 + p̄(r)

γ−1
γ K̄1/γε

γ−1
γ

0

] [
1 +

4πr3p̄(r)ε0
M̄(r)M�c2

] [
1− 2GM̄(r)M�

c2r

]−1
(4’)

where

p = ε0p̄, ε = ε0ε̄, M(r) = M�M̄(r) (7)

ε0 =

[
1

K

(
R0

α

)γ]1−γ
(8)

and R0 = GM�/c
2 = 1.47Km. α is a constant given by

α =
R0

K̄1/γ
=

R0

(Kεγ−10 )1/γ
, (9)

and

β =
4πε0

M�c2K̄1/γ
=

4πε0

M�c2(Kε
γ−1
0 )1/γ

(10)

.

2.2 Rotating Perturbation

The equations used in for this model, unless stated otherwise, were taken from S. Chandrasekhar’s

paper ”The Equilibrium of Distorted Polytropes” [2]. The article thoroughly derives all these

equations but for the sake of brevity the pertinent equations have been given as follows. Again,

a polytropic equation of state is assumed:

P = Kρ
1+

1

n (11)

Density is then written in the form
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ρ = λΘn, (12)

where λ is a constant and Θ is given by a Taylor expansion. By neglecting second and higher

order terms Chandrasekhar’s finds the following equality

Θ = θ + v

[
ψ0(ξ)−

5

6

ξ1
2

3ψ2(ξ1) + ξ1ψ′2(ξ1)
ψ2(ξ)P2(µ)

]
, (13)

where θ, v, ψ0,2, ξ are as given in the following equations. P2(µ) is the second Legendre polyno-

mial with variable, µ, being the cosine of the polar angle measured from the axis of rotation. ξ

is the variable used in place of r for the rest of the model and is given by the relation

r =

[
(n+ 1)K

4πG
λ

1
n
−1
]1/2

ξ, (14)

θ is the solution to the Lane-Emden differential equation

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn. (15)

ξ1 is the radius of the non-rotating star and, consequently, the first zero of Lane-Emden equation.

v is a function of angular velocity, ω:

v =
ω2

2πGλ
. (16)

ψ0,2 are the solutions to the differential equations

1

ξ2
d

dξ

(
ξ2
dψ0

dξ

)
= −nθn−1ψ0 + 1, (17)

1

ξ2
d

dξ

(
ξ2
dψ0

dξ

)
=

(
−nθn−1 +

6

ξ2

)
ψ2. (18)

In order to apply the RK4 numerical method, equations (15), (17), (18) were transformed using

the substitution

Γ = ξθ, (19)

η0,2 = ξψ0,2. (20)

Thus, they become

d2Γ

dξ2
= −ξ1−nΓn, (15’)

d2η0
dξ2

= −n
(

Γ

ξ

)n−1
η0 + ξ, (17’)

d2η2
dξ2

=

(
−n
(

Γ

ξ

)n−1
+

6

ξ2

)
η2, (18’)
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further leading to

Θ =
1

ξ

Γ + v

η0 − 5

6

ξ31η2(ξ)P2(µ)

2η2(ξ1) +
dη2(ξ1)

dξ


 . (13’)

Finally, the oblateness, σ, of the rotating star could be found using

σ =
5

4

v

|θ′1|
· ξ1ψ2(ξ1)

3ψ2(ξ1) + ξ1ψ′2(ξ1)
, (21)

which could then be used to create a 3D model of the spheroid star.

3 Methods

3.1 The RK4 method

For the non-rotating case we have two coupled ordinary differential equations (1’) or (4’) and

(2’). As there is no analytical solution, we use the Runge-Kutta algorithm to attain a numerical

solution [3]. In particular, we have used the Forth Order Runge-Kutta method, which is based,

as all other RK methods, on a Taylor expansion. This leads to four equations that allows us to

calculate the value of the variable y by increasing the radius r by small steps h with an error

proportional to h4.

k1 = f(ri, yi), (22)

k2 = f(ri +
h

2
, yi +

h

2
ki), (23)

k3 = f(ri +
h

2
, yi +

h

2
k2), (24)

k4 = f(ri + h, yi + hk3), (25)

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (26)

where

f(r, y) =
dy

dr
. (27)

The algorithm is run from the center of the star, where both radius and mass are zero, to the

point at which pressure becomes zero (within one step size of h). This is where the radius and

total mass are found.

For the rotating model we use the same method. This is because, in spite of being able to

analytically solve Lane-Emden’s equation for n = 0, 1, 5 there are no solutions for other n. In

this case three differential equations (15’)(17’)(18’) are solved. As these are now second order

differential equations, the RK4 method had to be applied to both the desired variable and its

5



first derivative simultaneously. The initial boundary condition is the same as for the non-rotating

star, but the algorithm now stops at ξ1. The values of η0,2(ξ1) are found and used to calculate

the oblateness.

4 Results

4.1 Non-Rotating Model

The code outputs Figure 1a) showing how pressure is distributed with distance from the center.

This can also be seen for the mass distribution in Figure 1b).

(a)

(b)

Figure 1: Pressure (a) and Mass (b) against r/R for γ = 4
3 . Initial parameters: α = 1.473 Km

and p̄(0) = 10−15.

A plot of p against r/R for varying values of central pressure, Figure 2b, shows a identical

distribution with a linear dependence on central pressure. This suggests that all white dwarfs

have the same pressure, and thus mass, distribution as a function of the proportion of their

radius, implying the distribution is purely dependent on the EoS in our model. Figure 2a shows

that mass distribution is independent of central pressure for white dwarfs with relativistic Fermi

gas.
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(a)

(b) .

Figure 2: Mass (a) and pressure (b) against r/R for the three different central pressures. Initial

boundary condition of γ = 4/3, α = 1.473

In addition, we can see in Figure 3a comparison between the two types of inner Fermi gases. It

is noticed that pressure and mass decrease and increase faster for a Fermi relativistic gas. The

values of mass are denoted to be much higher for relativistic inner Fermi gas. This agrees with

the theory, as non-relativistic white dwarfs must be less energetic, and so less massive.

For neutron stars, Table 1 shows how they behave with and without general relativity corrections,

plus compares some dimensionless central pressures.

p̄(0) R (Newton) M (Newton) R (TOV) M (TOV)

10−4 14.95 0.7 13.78 0.57

10−5 18.81 0.35 18.2 0.32

10−6 23.69 0.18 23.38 0.17

Table 1: Radius R (km) and mass M(M�) for neutron stars with α = 1km and a non-relativistic

Fermi gas.
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(a)

(b) .

Figure 3: Pressure (a) and Mass (b) against r/R for the two types of inner Fermi gas. Initial

boundary condition of p̄(0) = 10−16

The results indicate that radius gets smaller with general relativity corrections, which is in

support of the theory, as Einstein’s gravity is stronger than Newton’s. Additionally, it is obvious

that general relativity corrections are not negligible. Finally, with decreasing central pressure

radius increases but mass decreases. Again, this matches the expectations.

4.2 Rotating-Perturbation

The rotating perturbation agreed with the static model when angular rotation was set to 0 which

implies that both models were functioning correctly.
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Figure 4: Comparison for both models for a neutron star with p̄(0) = 10−5

However for non-zero rotation, once ξ passed the value of ξ1 the values of equations (15’)(17’)(18’)

rapidly approached −∞ so they did not allow equation (13’) to be implemented beyond the first

zero point of the Lain-Emden equation. This means that the pressure and density distributions

could not be found in the ’additional regions’ beyond the ξ1 sphere, permitted by the change

to the Newtonian structure equations. Nevertheless, the shape could still be modelled as the

oblateness could be calculated using variables that could be found within the ξ1 sphere.

The model was run for different periods of rotation and was found to break at 1.68 ms, where

the oblateness reached 1, as seen in Figure 5. This period turns to be close to 0.33 ms, which is

the believed limit for a neutron star of mass M = 1.442M�[4].
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Figure 5: Point at which the neutron star would disintegrate, according to our model. Thus,

giving a maximum angular frequency of ω = 3740Hz. This is a limit of our model due to slow

rotational approximations made in the derivation of the equations in [2], rather than a physical

limit of neutron stars themselves.

In Figure 6 we can observe how the flattening occurs. Again, the theory is satisfied, because

with lower period (higher angular velocity) there is, consequently, greater flattening.
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(a) Neutron star with T = 30 s (b) Neutron star with T = 3 ms

Figure 6: Comparison on how an increase in angular velocity affects the neutron star. Sub figure

a) has equatorial radius R = 18.7 Km and b) has R = 27.2 Km.

5 Conclusions

Many approximations and simplifications were made to our model in order to make the equa-

tions easily integrable. The first of these was an idealistic equation of state: assuming an ideal

Fermi gas and an isotropic, spherically (or cylindrically, in the rotating case) symmetric distri-

bution. We also assumed that this polytropic equation for the gas was applicable for all densities

throughout the star, whereas the equation of state would change through the star as the density

decreases towards the edge. Furthermore, for the rotating stars we have dismissed second and

higher order terms in v =
ω2

2πGλ
, as the model works better for small velocities and just used

newtonian physics. Starting by generalizing the rotating model for general relativity loads of

things can be done to go one step further. Nevertheless, the model for both rotating and non-

rotating stars appears to be consistent with the theory and, even though it has its limitations,

it is a close description of reality. Finally, it would be interesting to apply the rotating model to

white dwarfs and see how they behave under rotation, comparing them with neutron stars.
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